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Stanislav Ordin  
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Abstract: 
Any FIELD, by definition, is Force, which is a continuous parameter of space. For the 
Magnetic Field, this parameter is the Ampere Force, but it was actually neglected. 
Without fully understanding the ELEMENTARY Lorentz Force, the mystical “Theory” of 
Magnetism was built - the theory of interaction of Descartes’ “gimlets”, which was used 
by Maxwell to build General Electrodynamics. This, strictly speaking, led to the 
uncertainty of the very concept of the Magnetic Field. So, in practice, when designing 
magnets, the “Theory” of Magnetism actually did not work and was used by Kirchhoff’s 
rules based on empirical parameters. The analysis of the ELEMENTARY Electric 
Oscillator made it possible to unambiguously connect the IMAGINARY terms of the 
Complete Solution of the differential equation of the Complex Elementary Oscillator 
with the IMAGINARY Parameter initially introduced into its equation, which strictly 
corresponds to the orthogonal Electric Field - Magnetic. And this made it possible to 
restore the correct picture of the Magnetic Field. 
 
Keywords: Orthogonal Frame, Oscillator, Real Solution, Complex Solution, Orthogonal 
Ampere Force. 

 

 
INVARIANT BASIS AND MAGNETISM 

In modern Science, since the description of fragments on the Basis of Local, purely empirical Laws 
is often used, and not a single Axiomatic Approach on the BASE of a strictly established 
Orthogonal Frame, many contradictions have accumulated. Likewise, the Magnetic Field, widely 
used in modern Science and Technology, which is one of the Benchmarks, because of his 
imaginary “Exceptionalism” [1], there is still not even an unambiguous Definition of it. That is why 
specialists who use the Magnetic Field in practice invest in its understanding what is more familiar 
to them - either H or B. This leads to confusion in the development of magnetic materials. And for 
practical calculations of devices such as electromagnets on the Tokamak, and on the LHC, and in 
the MRI, and on magnetic levitation trains, they use technical rules of thumb from the 
“Theoretical Fundamentals of Electrical Engineering,” which are borrowed from the design of 
electromagnets for loading scrap metal. So, it is not at all by chance that in the modern Theory of 
Magnetism there are many contradictions and inconsistencies, even such large ones as the 
discrepancy between the Electromagnetic and Optical Descriptions. And in work [2] the most 
fundamental reasons for the need for a strict Determination of the Magnetic Field were shown. 
But there are enough contradictions in the Classical Description of Magnetism to try to forget 
about entire volumes of “mental” constructions in which they tried to eliminate the contradictions 
in the BASIS of the modern Classical Theory of Magnetism by the method of adjustments. The 
BASIS must be chosen initially CONSISTENT so as not to hide behind additional Quantum 
Conditions in the very Definition of the Magnetic Field. Whereas theorists, claiming that without 
Quantization it is generally impossible to explain Magnetism, act, making a phenomenological 
mistake, exactly the opposite. And the age-old misconceptions in the BASICS of Quantization and 
the Theory of Relativity, as shown earlier, arose due to the fact that ideas about the Magnetic 
Field are inherent in their original form, like the “gimlets of Democritus” passing through the spiral 
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channels of the Earth from the “North Pole” to "South Pole". And this entailed that “gimlets” were 
recorded in science, even in Mathematics for hundreds of years. 
 
But, after the bridge was thrown from Quantization to Relativity, it became obvious that one of 
the reasons for the fundamental difficulties is the finiteness of the speed of light, which they have 
in common. So, both Quantization and SRT require clarification of the BASIS, which includes the 
very Definition of the Magnetic Field. After all, it was this that initially demonstrated the finiteness 
of the speed of light. And if we start in the Definition of the Magnetic Field from Ampere’s Law, 
which actually describes the Magnetic Force, proportional to the relative speed of electrons, then 
it follows that this is simply the force of interaction between MOVING charges. According to 
Ampere, it is positive if the charges move parallel and in one direction and negative if they move 
antiparallel - counter. If we recall Galileo’s Principle of Relativity, then Einstein introduced a 
correction to SRT for charges moving relative to each other only for mass. And if for charges 
stationary relative to each other there is only the Coulomb force, then between moving charges, 
in addition to the Coulomb force, an additional force arises, perpendicular to the relative speed, 
proportional to the relative speed of movement of the charges. And the main question that 
divided scientists into two believing sects is the question of what to consider the movement of 
both light and a pair of charges in relation to a stationary observer or relative to the environment. 
But this “paradox” is also removed if initially, in strict accordance with the Principle of Causality, 
we take into account the finiteness of the rate of change of the Coulomb field when a charged 
particle is displaced. At the same time, the imaginary paradox about the absence of interaction 
between orthogonal coordinates is also eliminated - simply the energy for each of them is 
calculated through the product of collinear forces and coordinates. 
 

ELEMENTARY COMPLEX OSCILLATOR 
In previous works, the ELEMENTARY Oscillator was analyzed on the basis of the Mechanical 
Oscillator. For the differential equation of this Oscillator, a Complete REAL Solution was 
obtained, which is of a General Character for any modifications of the Oscillator [3, 4]. And it was 
shown that the complex parameters artificially introduced into Newton’s Partial Solution for the 
REAL Oscillator are purely conditional. Imaginaries can be used only under strictly specified 
conditions. This was simply a technical technique for approximately finding the independent real 
parameters of a Particular Solution on the complex plane. This purely mathematical confusion in 
complex Particular Solutions can, as will be shown in this paragraph, be identified and eliminated, 
taking into account the physical properties of the Magnetic Field. 
 

 
Fig.1: Model with gravitational inertial force and electrostatic rigidity force (a) and model 

with magnetic inertial force (b) 
 
To do this, consider two different modifications of the ELEMENTARY Electric Oscillator. In one, 
the so-called Plasma - Basic Optical Model, which describes the reaction of free electrons to 
radiation (electromagnetic), the Electric Oscillator is a modified ELEMENTARY Mechanical 
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Oscillator, only the rigidity force for charged particles is determined not by a mechanical spring, 
but by the electric field created by the charges themselves displaced onto the plates (Fig. 1a). In 
another Basic Electrical Model of the Oscillator, built using purely empirically established 
technical parameters: capacitance of the capacitor and inductance of the coil, oscillations are 
described not in the position of charges, but in oscillations of currents in the circuit (Fig. 1b). 
 
For comparison, the basic formulas describing these two models are given in Table 1. 
 

Table 1: The balance of forces or energies, previously described by one Newton harmonic, 
the change in the position of charges (in the Plasma model) and the change in currents (in 

the Skin layer model). 
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In work [5], the limits of applicability of these models were analyzed, when going beyond the 
limits of applicability of which a borderline “Catastrophe” appears in the description, similar to 
that eliminated by Planck [6]. Without realizing the very existence of this “Catastrophe” in optics, 
they always tried to eliminate the “errors” associated with it using the Landau smallness 
parameter (which, in principle, is not true for giant effects [7]). And in electrodynamics, the same 
approach of adjustments was veiled by the distance of electromagnetic waves from the emitter, 
which even tried to justify the coincidence of the phases of the electric and magnetic fields in 
them. The distance from the emitter of the electromagnetic wave actually hides the fact that both 
in the emitter itself and in the waves emitted by it there is no instantaneous disappearance of 
energy, which is obtained without any adjustments for the current and voltage shifted in phase 
by a quarter of the period, the sum of their energies is - squared amplitudes constant. The product 
of instantaneous (strength) current and instantaneous (“strength”) voltage is not instantaneous 
total electrical power - it is only a technical method for determining electrical power by the 
product of effective (equivalent to constant) amplitudes of current and voltage. 
 
Formally, the force balance equation of the Plasma Model (in the table on the left) can be 
transformed (by taking the derivative) into the equation of the Skin Layer Model (in the table on 
the right). But this is not the basis for the identity of these equations. This is only a manifestation 
of the applicability of the Principle of Logarithmic Relativity to the very model of the 
ELEMENTARY Oscillator for different degrees of derivatives. This “logarithmic” approach was 
actually used earlier when describing processes using quasiparticles. But under certain boundary 
conditions (frequencies), mixed vibrations can also play a significant role, for which strict 
separation of derivatives does not work. Planck described them with the Quantum of Energy of 
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resonant electromagnetic waves, but purely statistically. And in order to strictly mathematically 
describe mixed oscillations, it is necessary to take into account all the terms of the equation used 
in both models, but separately. From a comparison of the equations, it is clear that in the Plasma 
Model (on the left) the inertial force proportional to the current is neglected, and the force 
proportional to the mass of charges, which is neglected in the Skin Layer Model, can act as a kind 
of rigidity. 
 
These neglects are acceptable in different oscillation frequency ranges. Since static gravitational 
forces are 42 orders of magnitude weaker than electrostatic forces, their comparison by order of 
magnitude in the equation on the left is possible only at very high frequencies, when the inertial 
force due to large accelerations is large. Of course, if we assume that the electric force does not 
depend on frequency - on the acceleration of the charge. The latter, in fact, is indicated by the 
fact that the Plasma Model well describes the high-frequency edge of plasma reflection by free 
carriers in metals and semiconductors. But to what extent the inertia of the charge itself is 
negligible is still an open question [8]. And an additional circumstance that helps equalize the 
electrical force and the force of gravitational inertia is the high concentration (total mass) of 
electrons in metals with a small charge that inhibits this entire mass of electrons in a volume 
proportional to the displacement of electrons in a thin surface layer. It should also be borne in 
mind that when photons are specularly reflected from a plane for free carriers, there is no real 
(model, perpendicular to the electric field) boundary on the plane. The role of the boundary is 
played by locally compressed electrons themselves - plasma waves. And the artificial creation of 
boundaries perpendicular to the electric field leads to the formation of a spatial Oscillator below 
the cutoff frequency and to diffraction effects above the cutoff frequency. 
 
Traditionally, the introduction of a term proportional to velocity into the Oscillator equation 
means friction, the contribution of which, as is known, determines the damping of oscillations. 
Valid Solutions for the ELEMENTARY Oscillator. Modifications of the ELEMENTARY Oscillator 
equation to take into account additional forces were carried out earlier, but due to a parametric 
change in the rigidity force [9]. Those. an influence orthogonal to the forces traditionally used in 
balance was implicitly implied. But the Orthogonal Force, initially believed, does not produce 
work (although in reality the force and displacement for each coordinate separately should be 
collinear). The zero-energy coupling of forces clearly violated Logic, but qualitatively the model 
of a parametric Oscillator made it possible to describe a number of effects. Although, formally, 
using Mathieu functions, it did not provide an answer to the Physical Question, and the observed 
absorption at the vibration frequency along the wave vector of light (Fig. 2) indicated the 
exchange of energy between normal vibrations in anisotropic crystals [10]. 
 
In a rhombohedral boron nitride single crystal, when light propagates along the symmetry axis C, 
in the transmission spectrum, in addition to the normal absorption band in the frequency range 

of optical phonons polarized perpendicular to the C axis C C
L T ⊥ ⊥  , a non-transmission band 

anomalous in frequency IIC IIC
L T   and shape was discovered. 
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Fig.2: IR absorption spectra of rhombohedral and hexagonal (with disordered crystallites) 

boron nitride measured at normal incidence of unpolarized radiation on plates 
perpendicular to the C axis. 

 
In the absorption spectrum of a weakly ordered textured sample of hexagonal boron nitride 
shown in Fig. 2, in which the C axis of its crystallites is deviated from the wave vector of light, the 
classical crystal-optical contribution to the absorption of vibrations along the C axis appears in the 
form of a normal absorption band between the transverse and longitudinal vibrations 
corresponding to interlayer vibrations. phonons. Whereas for a highly ordered single crystal of 
rhombohedral boron nitride, instead of this usual absorption band, only scattering peaks are 
observed at phonon frequencies, the polarization of which is orthogonal to the polarization of IR 
radiation. 
 

 
Fig.3: Dependence of the ratio of the P- and S-components of unpolarized radiation 

transmitted through an oriented sample of rhombohedral boron nitride on the thickness of 
the sample and on the angle of rotation of the C axis relative to the wave vector of light. 

 
The inset to Fig. 3 shows the setup of a polarization experiment to analyze the P- and S-
components when the C axis of rhombohedral boron nitride deviates from the direction of light 
propagation. 
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Precision polarization measurements of highly ordered crystals of rhombohedral boron nitride 
presented in Fig. 3 made it possible to associate the anomalous stopband in it with scattering by 
orthogonal vibrations. And although this did not give a direct answer to the question of the 
reverse transfer of energy between them, it nevertheless indicated the incompleteness of the 
description of the Causality Principle by the Kramers-Kronig relation without taking into account 
the contribution of orthogonal oscillations, at least scattering by them. 
 
But in an electromagnetic wave, not just scattering occurs, but energy transfer between 
orthogonal oscillations. And from a comparison of the Models of two Electric Oscillators and their 
equations (Table 1) it is clear that in both of them, separately, this is not taken into account. The 
Plasma Model does not take into account the Inertia of Current, and the Electrical Model does not 
take into account the Inertia of Mass, which, as noted above, is permissible only within the limits 
determined by the limits of applicability of the models. 
 
And, at the same time, since it is ignored that the unaccounted orthogonal terms are directly 
related to the exchange of energy between orthogonal oscillations, we will not complicate the 
existing Oscillator models with additional terms. For now, we will limit ourselves to considering a 
fundamentally new Electric Oscillator with an additional, previously unaccounted for member. 
And the introduced new Reactive Force orthogonal to the Electric Field, proportional to the speed 
(current), will be taken into account using IMAGINITY. So let's consider another modification of 
the ELEMENTARY Oscillator - the Complex Electric Ideal Oscillator based on the balance of only 
two orthogonal forces. 
 
In this simplest model case, we obtain the balance equation of the Real Electrical Force and the 
Imaginary Magnetic Force orthogonal to it. In this case, we have the Oscillator equation for the 
Real and Imaginary (orthogonal to the Electric Force) charge displacement, standardly excited by 
a single initial condition: 

 

i ' 0, 0 1x t x t x     
     
+ = =       (1) 

 

1 1 1
cos isin ,x t t

  

   
   
      

= + =     (2) 

 

 
Fig.4: Associated resonant oscillations of two Orthogonal Forces, the single frequency of 

oscillations of which is determined by the reactive connection of these Forces. 
The considered simplest equation with reactive “friction” actually gives oscillations of two 
orthogonal forces even at zero gravitational mass. And it corresponds to oscillations of two 
orthogonal forces exchanging energy, which is what happens in an electromagnetic wave, 
without any instantaneous loss of energy. 
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For simplicity, the solution of the equation with the reactive coupling coefficient at a unit stiffness 
coefficient was obtained. If we return to the designations of the coefficients of the equation from 
Table 1, it will become clear that the natural oscillation frequency of the Complex Oscillator is 
equal to the ratio of the reactive damping coefficient to the stiffness coefficient (without the 
square root, as for the Real Oscillator): 
 

1
i ' 0 i ' 0x t x t x t x t

 
 

 
       
       + =  + = =    (3) 

 
Now let’s consider the action on the Ideal Complex Oscillator of a single driving Force. But first, 
let us recall that its action on the ACTUAL Oscillator: 
 

2'' * sin , 0 0, ' 0 0x t x t t x x                  + = = =    (4) 

 
manifests itself in the fact that a driving force of any frequency excites in the Real Oscillator both 
oscillations at the frequency of the driving force (Newton’s harmonic) and oscillations at its own 
resonant frequency: 
 

2 3 2 2 2 3

sin sin 1
sin sin

t t
x t t t

  


  

               

 − 
= = − 

− + − + − +
   (5) 

 
And these two harmonics have different dependences, shown in Fig. 5, on the frequency of the 
driving force, where the resonant frequency is taken as a unit of frequency measurement. 
 

 
Fig.5: Frequency dependences of the amplitudes (left) and amplitude modulus (right) of 

Newton's harmonics (red curves) and oscillations at the resonant frequency (blue curves). 
 
For an Ideal Complex Oscillator (with purely reactive friction, in accordance with formula (3), the 
action of a single driving force is described by the expression: 
 

i ' sin , ' 0 0x t x t t x               + =  =    (6) 

 
In this case, for the Ideal Complex Oscillator we obtain the same as for the Ideal Real Oscillator. 
solution from two harmonics, but for both the real and imaginary parts of the oscillations. In this 
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case, both Imaginary harmonics are shifted relative to the corresponding Real harmonic by a 
quarter of the period: 
 

       

       

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

cos cos sin sin
i

sin cos sin cos
i i

t t t t

t t t t

x
    

   

    

   

   
− + + − = 
− + − + − + − + 

     
= − − −   

− + − + − + − +   

=

    (7) 

 
Taking, for clarity, the resonant frequency and amplitude of the driving force as unity, we obtain 
the dependences on the frequency of the driving force of the amplitudes of real and imaginary 
oscillations of the Ideal Complex Oscillator, both at the frequency of the driving force (Fig. 6, left) 
and at the resonant frequency (Fig. 6, on right): 
 

 
Fig.6: Frequency dependences of the harmonic amplitudes of the Complex Ideal Oscillator. 

 
In a simplified notation with a single resonant frequency, instead of expression (6) we have: 
 

i ' sin , ' 0 0x t x t t x              + = =     (8) 

 
and we obtain the relative change in the harmonics of the Complex Ideal Oscillator), similar to 
formula (2): 
 

  ( ) ( )   ( ) ( )2 2 2 2x=i cos / 1 cos / 1 sin / 1 sin / 1
t t

t t      
 

    
− − + − + − − −    

    
  (9)  
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For Real harmonics this change, similar to Fig.4, is shown in Fig.7. 
 

 
Fig.7: Relative change in the Real harmonics of the Complex Oscillator. 

 
Changes in the Imaginary (shifted by a quarter of the period relative to the Real) harmonics of the 
Complex Oscillator are also obtained similar to those shown in Fig. 7. 
 
Thus, we obtain for the Ideal Complex Oscillator and under the influence of the driving force of 
the pair, exchanging oscillation energy. Moreover, each of these two pairs consists of a Real 
oscillation along the Oscillator axis and an “Imaginary” oscillation orthogonal to the Real 
oscillation, phase-shifted by a quarter of the period. And the “imaginary” arose earlier from 
orthogonality, and not due to the fact that the Magnetic Force is not the interaction of Descartes’ 
“gimlets”, simply mathematized by Maxwell. 
 

CONCLUSIONS 
Purely technically, the analysis shows that the true “IMAGINARY” (in the sense of orthogonal) 
Solutions strictly correspond to the IMAGINARY term initially introduced into the differential 
equation, corresponding to the Magnetic Field, orthogonal to the Electric Field, but exchanging 
energy with it. Thus, a qualitatively described mechanism of the formation of the Magnetic Field 
can also be described on the basis of the ELEMENTARY OSCILLATOR Model, cleared of the husk 
of “Imaginary” solutions for the Real Oscillator, but supplemented with an imaginary term strictly 
corresponding to the ORTHOGONALITY of the Forces, the balance of which leads to a set of 
interconnected oscillations. Elimination of this confusion with IMAGINES allowed us to make a 
correct macroscopic Redefinition of the Magnetic Field. 
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Feedback Functions in Problems Minimax Search  

A. E. Umnov & E.A. Umnov  

1. Moscow Institute of Physics and Technology (National Research University) 9 Institutskiy 
per., Dolgoprudny, Moscow Region, 141701, Russian Federation 
 

 

Abstract: 
This paper considers a method for obtaining a smooth approximation of the maximum 
function. Some generalizations of this approach are suggested, including formulas for 
minimax, maximin and their combinations. The resulting error is estimated and ways to 
reduce it are indicated. The proposed method uses functions that establish feedback 
links between primary and dual variables of the Lagrange function. These links are 
similar to the Karush-Kuhn-Tucker theorem, but without conditions of non-negativity 
or complementary non-rigidity. To illustrate the proposed method, task of searching 
for global extremum, estimation of the minimax value and an example from game 
theory are considered. 
 
Keywords: maximum function, multiple extremum, minimax, feedback function 
method, modified Lagrange function, game theory problems. 

 

 
INTRODUCTION 

This article discusses the tasks the basis of which is the search for minimax: 
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This problem obviously comes down to a two-level system of tasks. At the lower level the problem 
is solved parametric programming of the form: 
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At the lower level the problem is solved 
 

.),,(),( T

21 =

Ky yyyybyyxF minimized    (1.3) 

 

Where vector .),(maxarg yyxFx
yx

y onofdependenceis


  

 

We will also assume that the functions miyxfyxF i ,10),(,),( = have continuous 

derivatives with respect to all to its arguments up to the second order inclusive. 
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Problems (1.2) --- (1.3), as well as those reducible to them, were considered in large numbers 
research. A detailed overview of these works can be found, for example, in [Izmailov, 2006]. 
 
The main obstacles complicating the decision problem (1.3), are created by the following 

properties dependencies 

yx  

• domain of definition for the dependence 

yx  may be narrower (by y) than domains for 

functions miyxfyxF i ,10),(,),( = ; 

• dependency 

yx  may be ambiguous, i.e., non-functional; 

• dependency 

yx  maybe function, but non-differentiable. 

 
It is clear that all these properties arise from inequalities in the constraints of problem (1.2).  
 
A large number of algorithms are known solving problems (1.2) --- (1.3) using non-differentiable 
optimization methods and tools of sensitivity theory, e.g. [Danskin, 1967], [Fiacco, 1983], 
[Rockafellar, 1970], [Demyanov, Vasiliev, 1972], [Nurminsky, 1991], [Izmailov, 2006]. Such 
algorithms make it possible to overcome computational difficulties caused by features of the 

dependence 

yx . 

 
At the same time, there are methods for solving problems (1.2) --- (1.3), based on classical Taylor 
expansions. To date, options such algorithms have been proposed, for example, in [Fiacco, 
McCormic, 1968], [Germeyer, 1969], [Umnov, 2018]. This article discusses an approach related to 
the second direction. 
 

Suggested method is based on smooth function ),( yx  , which approximates the dependence 

yx

. That is, such a function for which equality ( ) ),(),,(lim
0

yxFyyxF y



+→
=


 is valid y . If 

yx  is 

unambiguous the last equality is replaced by 

+→
= yxyx ),(lim

0



. Moreover, the proposed 

approximation allows to overcome all the computational difficulties noted above. Specifically, as 

),( yx   it is proposed to use saddle point, modified in a special way, Lagrange functions for 

problem (1.2). This specificity is such that existence, functionality and smoothness for ),( yx   are 

guaranteed y . 

 

The proposed function ),( yx   is defined implicitly. However, the use the classical theorem on the 

system of implicit functions allows us to overcome this difficulty and build for ),( yx   Taylor 

polynomials of the required orders. 
 
In what follows, for brevity, the procedure for modifying the Lagrange function and searching for 
its saddle points is called as a method of feedback functions. 
 
For linear problem (1.2) this method described and justified in [Umnov, 2019]. The nonlinear case 
is considered in [Umnov, 2022, 2023]. Here is the use of this approach demonstrated by examples: 

• searching for the global extremum of functions of several variables, 

• calculations of minimax and/or maximin, 

• solving some types of game theory problems. 
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FEEDBACK FUNCTIONS: DEFINITION AND PROPERTIES 
For greater clarity First let's demonstrate the use feedback function method for the linear case. 
Let's consider the problem 
 

,,10)(max)(
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 conditionsunder  

(2.1) 

where minjijij ,1,,1,, ==  are constants. Here nE+  is non-negative orthant of the 

Euclidean space nE . Then the dual problem to (2.1) looks like 

 

,,10)(min)(
11

njgEG
m

i

iijjj

m
m

i

ii =+−=→= 
=

+

=

 conditionsunder  

(2.2) 
 

where T

21 ),,,( m = . The solution of (2.2) we will denote by T

21 ),,,(  = m  . 

 
Feedback function method to solve problems (2.1) --- (2.2) consists in replacing them with a 
system of equations 
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   (2.3) 

 

Here the function ( )sQ ,  has the following properties. 

• 2−1°.  ( )sQ ,  defined for 0 , strictly monotonically increases in s and at the same time 

for any fixed   −=
+→

),(lim
0

sQ
s

 , +=
+→

),(lim sQ
s

 . 

• 2−2°.  0s  0),(lim
0

=
+→

sQ 


 and this passage to the limit uniform by s on 

0),[ 00 + s . 

• 2−3°.  In the area of definition function ( )sQ ,  is continuously differentiable with respect 

to the totality of all its arguments. 
 

In [Umnov, 2019] it is shown that with such properties of the function ( )sQ , , system (2.3) has a 

unique solution  )(),( x  for any fixed 0 . Structure of the system (2.3) justifies the use for 

( )sQ ,  term feedback function. 

 

Moreover, if +*F , then for vector functions  )(x  and  )(  equalities are valid 

( ) ( ))(lim)(lim
0

*

0



GFxF

+→+→
== . In the case when the vectors x  and   are unique, then 



+→
= xx )(lim

0



 and 

+→
= 


)(lim

0
. Note also that the system of equations (2.3) due to the condition 

2---1° can also be written as 
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The function ( )sQ ,inv   is inverse to the function ( )sQ , . ( )sQ ,inv   is defined 0  positive 

and increases monotonically in s on the entire real axis. All together this means that the vector 

functions )(x and )(  can be used as an approximation of solutions to problems (2.1) and (2.2) 

at 0+→ . 
 
Let us illustrate this statement with the following example. 
 
Example 2.1. For Tasks 

• Direct Problem: maximize in 2E  the function 21 32 xx +  , under conditions 0,0 21  xx  

and 62,62 2121 ++ xxxx  ; 

• Dual Problem: minimize in 2E  the function 21 66  +  , under conditions 0,0 21    

and 32,22 2121 ++   . 

 

Their solutions will be 10,2,2 21 ===  Fxx  and 10,
3

1
,

3

4
21 ===  G  . 

 

If you use ( ) ssQ ln,  =  then system (2.3) will have the form 
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Its solutions for different values of the parameter   are given in Table. 2.1.1 
 

Таble 2.1. 
  )(1 x  )(2 x  ( ))(xF  )(1   )(2   ( ))(G  

110−
  1.91387303   2.05644660   9.99708585   1.30690566   0.31409072   9.72597830 

210−
  1.99167722   2.00559101  10.0001275   1.33099033   0.33105995   9.97230168 

310−
  1.99917130   2.00055811  10.0000169   1.33310196   0.33310265   9.99722768 

410−
  1.99991717   2.00005580  10.0000017   1.33331023   0.33331023   9.99972274 

510−
  1.99999172   2.00000558  10.0000002   1.33333102   0.33333102   9.99997227 

610−
  1.99999917   2.00000056  10.0000000   1.33333310   0.33333310   9.99999723 

 

 
1 To check the results, the authors recommend using formula (6.1) given in the Conclusion. In this case, the 
calculations will depend less on the choice of initial approximations. 
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Let us now move on to the nonlinear case. It is easy to verify that system (2.3) gives stationarity 
conditions auxiliary function 
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Where =

s

dvvQsR
)(

),(),(


  and the value of )(  is found from the equation 0))(,( =Q  . 

This equation has (and, moreover, the only) solution 0 . Indeed, the function ),( sQ   strictly 

monotonically increasing in s and not limited both below and above ( )+ ,0s . 

 
Function (2.4) can be interpreted like some modification of the Lagrange function. Really, 
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where ( ),xL  − regular Lagrange function of problem (2.1) [Bazaraa, 2006], [Bertsekas, 2016], 

having the form 
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This form of recording Lagrange functions for problem (2.1) does not depend on whether the 

functions are linear mixfxF i ,1)(,)( =  or not. Therefore (2.5) can be used as definition 

auxiliary function ( ) ,, xU  for a nonlinear problem. 

 

.,10)(max)( mixfExxF i

n =→ + conditionsunder    (2.6) 

 

In what follows we will assume that the functions )(xF and mixfi ,1)( =  have continuous 

derivatives with respect to all their  arguments up to the second order inclusive. 
 
Let's consider the conditions of applicability feedback functions to find a local solution to problem 

(2.6) with finite value F  and maybe with not a single point x such that that )(  = xFF . We will 

also assume that in the problem under consideration the Lagrange function is regular, and there 

are also compact, with non-empty interior of the set n

x E  and mE  , for which there is 

at least one pair of vectors xx   and   , such that ( )  = FxL , . 

 

Let the function feedbacks ( )sQ ,  defined 0  and ( )+ ,0s  and has the properties 2−1°, 

2−2° and 2−3°. From the definition of ( )sR ,  it also follows that ( )s
s

R
sQ ,),( 




= . 

 
In the future it will be convenient to use a more general formulation of the problem (2.6). We will 

assume that the conditions 0jx  are not available for all nj ,1= , but only for the first nq   or 
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are absent altogether. In addition, let us assume that in formulation (2.6) there are only mp   

restrictions type <<inequality>> and the rest are of the <<equality>> type. 
 
That is, the nonlinear programming problem is considered: 
 

.,10)(
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,,10

max)(

mpixf
pixf

qjx

ExxF

i

i

j

n

+==
=

=

→

conditionsunder      (2.7) 

 
Then, taken by definition, the auxiliary function will look like 
 

( ) ( ) ( ) ,,,,),,(
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p
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i

q

j

j RxRxLxU       (2.8) 

 
where case 0=q  or 0=p  means the absence of corresponding terms in (2.8). 

 
In [Umnov, 2022] it is shown that under the assumptions made above the following statements 
are true. 
 
Theorem 2.1: 

If the function ),,(  xU  has saddle point  )(),( x  inside x  then the vectors )(x  and 

)(  are solutions to the system of equations 
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In coordinates system (2.9) has the form 
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  (2.10) 

 
The structure of system (2.10) is similar to the conditions of the Karush-Kuhn-Tucker theorem, 
but does not contain explicit conditions non-negativity of Lagrange multipliers and conditions of 
complementary non-rigidity. 
 

Vector functions )(x  and )(  set parametrically in x  a line, which we will call saddle 

point trajectory of the problem (2.7). 
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Theorem 2.2: 

On the saddle-point trajectory of the problem (2.7) we have ( ) ,)(),(,lim *

0
FxU =

+→



 and in the 

case of local uniqueness solution to problem (2.7) the equalities are also valid *

0
)(lim xx =

+→



 and 

.)(lim *

0



=

+→
 

 
Theorem 2.3:  

On a saddle trajectory, the vector functions )(x  and )(  continuously differentiable according 

to your arguments 0 . 
 
Example 2.2 

maximize by 1Ex  function ( )22)( −= xxF under the conditions and 4)(1 = xxf , 

1)(2 −−= xxf  illustrates the statements of these theorems. 

 

This example has two local solutions 1,1 ==  Fx  and 4,4 ==  Fx . To solve this problem, 

we use the feedback function 
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and the conditions for its stationarity are correspondingly 
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Properties of the U-function for Example 2.2 are illustrated in Fig. 2.1−2.4. Fig. 2.1 shows the 
system of isolines of the function ),,,( 21  xU  for fixed 01.0=  and 001.01 = .  

 
Figures 2.2, 2.3 and 2.4 present (at three different vertical scales) graphical solution of the 
equation ( )xx ,= . This equation is obtained by excluding the unknowns 1  and 2  from (2.11) 

for values 1.0,025.0=  and 0.250. 

 

Figures 2.2 − 2.4 show that the function ),,,( 21  xU  for small positive values of   has three 

isolated stationary points, correspondingly belonging to the neighborhoods of the points: 
 

   }.0,4,4},0,0,2},2,0,1 )3(2)3(1)3()2(2)2(1)2()1(2)1(1)1( =========   xxx  
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According to the data given in table 2.2 (obtained by the same algorithm), we can also conclude 
that convergence point depends both on the starting points and on the value of the parameter 
. 

 
Fig. 2.1. System of isolines for a function ( ).,001.0,,01.0 2xU  

 

 
Fig. 2.2. Graphical solution of the equation ( )xx ,= . Vertical scale is 1.00. 

 

 
Fig. 2.3 Graphical solution of the equation ( )xx ,= . Vertical scale is 0.20. 
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Fig. 2.4. Graphical solution of the equation ( )xx ,= . Vertical scale is 0.02. 

Table 2.2. 
Starting Points 

3.0000 0.0001 1.0000 3.0000 2.0000  1.0000 3.0000 0.0001 0.0001 

 
Solutions to system (2.11) 

  x  1  2  x  1  2  x  1  2  

0.1  0.91398
262  

0.01619
786  

2.17922
612  

4.19890
911  

4.21540
712  

0.01562
651  

2.02670
086  

0.02532
203  

0.04858
472  

0.03  0.97654
558  

4.96 
3

10
−

  

2.05115
786  

4.05724
084  

4.06222
643  

4.91 
3

10
−

 

2.00764
433  

7.53 
3

10
−

  

0.01488
291  

0.01  0.99239
520  

1.66 
3

10
−

 

2.01679
571  

4.01885
900  

4.02052
410  

1.66 
3

10
−

 

2.00251
576  

2.50 
3

10
−

 

4.99 
3

10
−

 

0.003  0.99774
061  

5.00 
4

10
−

 

2.00501
162  

4.00563
478  

4.00613
464  

4.99 
4

10
−

 

2.00075
141  

7.50 
4

10
−

 

1.50 
3

10
−

 

0.001  0.99924
896  

1.67 
4

10
−

  

2.00166
796  

4.00187
609  

4.00204
2746  

1.67 
4

10
−

 

2.00025
016  

2.50 
4

10
−

 

5.00 
4

10
−

 

0.000
3  

0.99977
491  

5.00 
5

10
−

 

2.00050
012  

4.00056
260  

4.00061
260  

5.00 
5

10
−

 

2.00007
501  

7.50 
5

10
−

 

1.50 
4

10
−

 

0.000
1  

2.00002
500  

2.50 
5

10
−

 

2.00501
162  

4.00018
751  

4.00020
418  

1.67 
5

10
−

 

2.00002
500  

2.50 
5

10
−

 

5.00 
5

10
−

 

0.000
07  

2.00001
750  

1.75 
5

10
−

 

3.50 
5

10
−

 

4.00013
126  

4.00014
292  

1.17 
5

10
−

 

2.00001
750  

1.75 
5

10
−

 

3.50 
5

10
−

 

0.000
03  

4.00005
625  

4.00006
125  

5.00 
6

10
−

  

4.00005
625  

4.00006
125  

5.00 
6

10
−

 

2.00000
750  

7.50 
6

10
−

 

1.50 
5

10
−

 

0.000
01  

4.00001
875  

4.00002
042  

1.67 
6

10
−

 

4.00001
875  

4.00002
042  

 1.67 
6

10
−

 

4.00001
875  

4.00002
042  

1.67 
6

10
−

 

 
USING FEEDBACK FUNCTIONS IN PROBLEMS OF SEARCHING FOR A GLOBAL 

EXTREMUM 
Let us now describe the scheme for applying method feedback functions in tasks, which are 
reduced to mathematical programming problems. First, consider the problem of finding an 
extremum on a finite set of numbers. 
 

The value of the maximum number in the set },,,{ 21 Kvvv   there is a solution to the following 

linear programming problems: 
 

.,1min Kivff i =→ conditionsunder     (3.1) 
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The variable f can have any sign. Therefore, we take the auxiliary function in the form 
 

( ) ( ) .,),,,(
11


==

+−−−=
K

i

i

K

i

ii RfvfvfU   

 
If feedback function ssQ ln),(  =  is selected, then the system of equations (2.9) will be 
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
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=
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ii

K

i

i

,1ln

,1
1
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
    




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











=

=
−

=


=

.expln

,,1exp

1

K

i

i

i
i

v
f

Ki
fv







  (3.2) 

 

The maximum and minimum of the numbers in the set },,,{ 21 Kvvv   will be equal respectively 

to 
 

















−−=








= 

=
+→



=
+→


K
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i
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i

i v
f

v
f

1
0

min

1
0

max explnlimandexplnlim








  (3.3) 

 

Now let's evaluate the difference between 

maxf  and 







= 

=

K

i

iv
f

1

expln


 . We will assume that the 

numbers in the set },,,{ 21 Kvvv   sorted in descending order and the first KM   of them are 

equal to f . Then we have 
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


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111
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  

 

( ) ,explnexp1lnlnexpln









 −

+=





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
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M
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where 1+= MvA . 

 
The resulting inequality means that the order of smallness of the error is equal to Mln  in the 
case when 1M  . If 1=M , then for 0+→  the order of error is noticeably smaller, since it is 

determined by the term 



−


fA

exp . 

 

If you use the feedback function 







−=

s
ssQ

1

2
),(


 , then the system of equations (2.9) will have 

the form 











=





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=+− 
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,,1
1

2
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1
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
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    (3.4) 
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for which only a numerical solution is possible. 
 
For illustration in Table 3.1 shows the results of solving system (3.2) for a set of numbers 

}0,7,4,2,5{ −  for different values of the parameter  . 

 
 

Тable 3.1. 
  )(f  )(1   )(2   )(3   )(4   )(5   

00.010−
 7.170719212 0.114095529 1.0404 

410−
 0.041973399 0.843058261 7.6877

410−
 

25.010−
 7.018454440 0.027615558 1.0841 

710−
 4.6651 

310−
 0.967715479 3.7990 

610−
 

50.010−
 7.000590038 1.7884 

310−
 4.355 

1310−
 7.5703 

510−
 0.998135874 2.430 

1010−
 

75.010−
 7.000002329 1.3048 

510−
 4.355 

1310−
 4.7135 

810−
 0.999986904 0.000000000 

00.110−
 7.000000000 2.0612 

910−
 0.000000000 9.358 

1410−
 0.999999998 0.000000000 

25.110−
 7.000000000 0.000000000 0.000000000 0.000000000 1.000000000 0.000000000 

 
In Table 3.2 are given for comparison numerical solutions of system (3.4) for a set of numbers 

}0,5,4,5,5{  also for the parameter  . 

 
Table 3.2. 

  )(f  )(1   )(2   )(3   )(4   )(5   
00.110−

 5.109862742 0.333328289 0.333328289 1.5133 
510−

 0.333328289 0.000000000 

20.110−
 5.069317752 0.333333319 0.333333319 4.3629 

810−
 0.333333319 0.000000000 

50.110−
 5.034741173 0.333333333 0.333333333 0.000000000 0.333333333 0.000000000 

00.210−
 5.010986124 0.333333333 0.333333333 0.000000000 0.333333333 0.000000000 

00.410−
 5.000109861 0.333333333 0.333333333 0.000000000 0.333333333 0.000000000 

00.710−
 5.000000110 0.333333333 0.333333333 0.000000000 0.333333333 0.000000000 

 
From Theorem 3.2 it follows that the error of the feedback function method decreases when 

0+→ . However, sometimes for a specific value   it may be unacceptably large. In this case, we 
can apply the implicit function theorem to system (2.9) to reduce the approximation error. 
 

Really, if we consider system (2.9) as an implicit definition of vector functions )(x  and )( , then 

their refined values can be obtained for example, according to the formulas 
 

nj
d

xd
xx

j
jj ,1ˆ =−=


  and mi

d

xd i
ii ,1ˆ =−=


   (3.5) 

 
A detailed look at this procedure is beyond the scope of this article. We only note that in [Umnov, 
2022] 
 

it is shown that, the point }ˆ,ˆ{ x  no longer belongs to the saddle trajectory. However, using 

formulas (3.5) can be performed iteratively in several steps. To do this, it is enough to replace 
scalar parameter   to a vector, turning the saddle path into a beam such trajectories. 
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Let us now consider the problem of finding extreme values for numerical sets of cardinality 

continuum. Let nE  is a compact with not empty inside. Replacing the operation of 
summation by integration in formulas (3.3), we obtain an estimate of the value global maximum 
of a function )(xf  of several variables 

 

.
)(

explnlim
0

max dx
xf

f 


+→

 =





     (3.6) 

 

Validity (3.6) follows from conditions   xfxf )(  and estimates: 

 

.
)(
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000

max dx
fxf
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dx
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 −
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


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















 −




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


==











 

 

.meslnlim
)(

explnlim0
00


−


+→




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


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dx
fxf

 

 
Relationship between integration operations and extremum search was previously used for 
solving problems of different classes: in the pass method, described, for example, in [Fedoryuk, 
1977] or when searching for maximin in game problems [Fedorov, 1979]. 
 

 
Fig. 3.1. System of isolines for a function 1)( 21 −+= xxxf . 

 
The following example illustrates application of formula (3.7). 
 
Example 3.1  

Find global extremes by 2Ex   functions 1)( 21 −+= xxxf , where .

22

,0

,11

21

2

1















+



−

=

xx

x

x
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Solution: 
For the global maximum we have: 
 

.4
2

exp12
2

3
exp8

2
exp

1
exp105

2
explnlim

1
explnlim

0

21

21

0
max
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−+
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=
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
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
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




dxdx

xx
f

 

 

It is achieved on the boundary of the region   with 11 −=x  and 42 =x  (Fig. 3.1). 

 
 

Global minimum is internal, non-smooth, at point 01 =x  and 12 =x : 

 

.012
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1
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Note also that the optimal value of the objective function in a mathematical programming 
problem 
 

.max)( nExxF → conditionsunder  

 
can be represented (under appropriate assumptions about the properties of )(xF  and  ) as 

 

.
)(

explnlim
0

max dx
xF

F 


+→

 =





 

 
USING FEEDBACK FUNCTIONS IN PROBLEMS OF SEARCHING FOR MULTIPLE 

EXTREMUM AND MINIMAX 
Feedback function method can be used to solve optimization tasks, whose objective functions are 
superpositions of extremum search operators. 
 
For example, consider the discrete problem finding minimax and maximin for a matrix 
 

10761
911312
4825

=ijA  , 

 

in which you need to find 




=

==
ij

minj
AA

,1,1
minmax minmax  and 






=

==
ij

njmi
AA

,1,1
maxmin maxmin , where 4=n  and 

3=m . 
 
Let us use equalities (3.3), from which follows that 
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

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Or, after simplifications, 
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Similarly, we find 
 

.8explnlim
1

1

1
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
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
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
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In Table 4.1 shows for various   the values of the functions from which the limits in (4.1) and (4.2) 
are taken. 
 

Table 4.1. 
  0300 0.250 0.200 0.150 0.125 0.100 0.075 0.05

0 

minma
x ( ) 

7.999631
605 

7.999917
657 

7.999990
981 

7.999999
757 

7.999999
986 

8 8 8 

maximi
n( ) 

6.989497
444 

6.995464
027 

6.998656
991 

6.999809
227 

6.999958
074 

6.999995
46 

6.999999
879 

7 

 
Now we consider the discrete-continuous minimax problem: 
 

find the minimum by x: )(max)(
,1

xfxF k
Kk=

=  

subject to: x , where nE  is compact,   (4.3) 

 

assuming that the functions Kkxfk ,1)( =  continuously differentiable on  . 

 

In the case when the set   is specified by a system of inequalities of the form mixyi ,1)( =  

problem (4.3) is equivalent to the mathematical programming problem: 
 

maximize by: },{ wx  w−  

subject to: Kkwxfk ,10)( =− ,     (4.4) 

mixyi ,10)( =  

 

Here we also assume that the functions mixyi ,1)( =  continuously differentiable on the set 

. 

The dependence 

xw  under the assumptions made is a continuous but non-differentiable function. 

Therefore, to solve problem (4.4), we apply the method of feedback functions with the auxiliary 
function (2.5) 
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Stationarity conditions for function (4.5) can be written in the form of a system of equations: 
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If the task the search for minimax has no restrictions and the feedback function is defined as 

ssQ ln),(  = , then the stationarity conditions auxiliary functions are simplified 
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  (4.6) 

 

The last two conditions of system (4.6) give us a smoothed approximation of the dependance 

xw  

( )

=









=

K

k

k xf
xw

1

expln)(


 . In this case, the first equality in (4.6) is necessary condition for 

stationarity )(xw  by x. 

 

The smoothness of the )(xw  function allows us to use standard analytical tools. We can check 

whether both necessary and sufficient classical optimality conditions are met. Let's take a 
problem as an example. 
 
Problem 4.1: 
Find the minimum value of the maximum function 
 

 2

2

2

1

2

2

2

1
},{

21 )2()1(25;max),(
21

−−+−+= xxxxxxf
xx

 

 
Solution: 
The formulation of task (4.4) in this case has the form 
 

maximize by },,{ 21 wxx : w−  

subject to: ,02

2

2

1 −+ wxx  
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.0)2()1(25 2

2

2

1 −−−+− wxx  

 
Auxiliary function (4.5) in this task there will be 
 

),(),())2()1(25()(),,,,,( 21

2
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2

2

112121  RRwxxwxxwwxxU ++−−−+−−−+−−=  

(4.7) 
 

Stationarity conditions for function (4.7) by variables wxx ,,,, 2121   are 
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    (4.8) 

 
where ssQ ln),(  = . 

 
Fig. 4.1. System of isolines of function (4.9). 

 
Let us briefly explain the scheme for solving system (4.8). From the first two equations we have 

12 2xx −= . From the last three − it follows that as smoothed approximation of the maximum 

function ),( 21 xxf  you can take 
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system of isolines of which for 1.0=  is shown in Fig. 4.1. 
 
Based on the form of the isoline of function (4.9), we can expect that this function has stationary 

points: };{},;{ )(2)(1)(2)(1 BBAA xxxx  and };{ )(2)(1 CC xx , belonging respectively to the surrounding 

areas for points A, B and C. 
 

Coordinates of points A, B and C can be found by considering the maximum function ),( 21 xxf . 

Point B is local maximum of the function ),( 21 xxf . It has coordinates }2;1{− . Points A and C are 

solutions to the extremum problem of the form: 
 

maximize by: },{ 21 xx  ,2

2

2

1 xx +  

subject to: .)2()1(25 2

2

2

1

2

2

2

1 xxxx +=−−+−  

 
It is easy to check that A }4;2{−  and C }2;1{ − . 

 
Table 4.2 shows numerical estimates of the coordinates of stationary points for smoothing 

function ),,( 21 xxw   for different values of the parameter  . 

 
Table 4.2 

  Starting point solution search procedures 

  -1.5 3.5 22.5 -0.6 2.3 24.
8 

3.0 1.0 10.0 

 Solutions of system (4.8) in the vicinity of the point: 

 A B C 
  1x  2x  w  1x  2x  w  1x  2x  w  

1.0
0 

-
1.976305
906  

3.95261
1813 

20.6355
9463 

-
1.00000
0002 

2.00000
0004 

25 1.02256
5341 

-
2.04513
0681 

5.63737
652 

0.9
5 

-
1.977519
843 

3.95503
9686 

20.6038
5998 

-
1.00000
0001 

2.00000
0001 

25 1.02146
1696 

-
2.04292
3391 

5.60546
7921 

0.9
0$ 

-
1.978730
572 

3.95746
1144 

20.5721
2044 

-1 2 25 1.02035
5555 

-
2.04071
1109 

5.57356
3393 

0.8
5 

-
1.979938
116 

3.95987
6232 

20.5403
7603 

-1 2 25 1.01924
6903 

-
2.03849
3805 

5.54166
2957 

0.8
0 

-
1.981142
498 

3.96228
4995 

20.5086
2678 

-1 2 25 1.01813
5724 

-
2.03627
1447 

5.50976
6630 

Sol. -2 4 20 -1 2 25 1 -2 5 

 

To illustrate the smoothing property of feedback functions we may use equality 12 2xx −= . In this 

case the dependence of w  on 1x  can be represented by the function 
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






 +−
+=




2

1

2

1
1

)1(525
exp

5
expln),(

xx
x  

 
Graph of this function, as well as its fragments in the vicinity of stationary points for different 
values of the parameter  , are shown in Fig. 4.2, 4.3, 4.4 and 4.5.  
 
Note that in the neighborhood of point B (see Fig. 4.4) differences in smoothing function values 
for different   are small and practically invisible on the chart. This effect can be explained by 
specific properties of the feedback function ssQ ln),(  = . 

 

 
Fig. 4.2. Function graphs ),( 1x  

 

 
Fig. 4.3. Function graphs ),( 1x  at A 
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Fig. 4.4. Function graphs ),( 1x  at B 

 

 
Fig. 4.5. Function graphs ),( 1x  at C 

 

To study the behavior of the function ),,( 21 xxw   we may use standard sufficient conditions 

classification of stationary points, based on Sylvester's criterion. For this purpose, we first present 
the formulas for partial derivatives of this function up to the second order inclusive. 
 
Let  



2

2

2

1

2

2

2

1 )2()1(25
expexp

−−+−
+

+
=

xxxx
 . 

Then  
 

( ) 






 +
−

−−+−
+


−=







2

2

2

1
1

2

2

2

1
1

1

exp
)2()1(25

exp1
2 xx

x
xx

x
x

w
 

 
And 
 

( )
.

)2()1(25
exp

14
2

2

2

2

12
2

2 

−−+−



−
+=



 xxx
x

x

w
 

   
Similarly, for second derivatives we have 
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( ) ( ) ( ) ,
2

exp)2()1(25
2

exp
2042

exp
2122 2

2

2

1

2

2

2

1
211

22

1

2









++−−+−−

++−+


=




xxxx

xxx

x

w


 

 

( )
,

2042
exp

)1(128 21

2

21

21

2



++−



−+
=



 xxxx

xx

w
 

 

( ) ( ) ( ) .
2

exp)2()1(25
2

exp
2042

exp
182 2

2

2

1

2

2

2

1
21

2

2

22

2

2














++−−+−−

++−−


=




xxxx

xxx

x

w


 

 

At points };{},;{ )(2)(1)(2)(1 BBAA xxxx  and };{ )(2)(1 CC xx  Hessian matrices for functions ),,( 21 xxw   at 

85.0=  there will be 
 

9735.84602456318.2608642-
6318.2608642-38.45472820

)Hess( =A , 

 
91.99999999-10 5.688-

10 5.688-91.99999999-)Hess( 10-

-10


=B  

and 
0139.39913667619.3704578-
7619.3704578-0210.3434498

)Hess( =C . 

 
From mathematical analysis it is known that that to use Sylvester's criterion, as a sufficient 
condition for the presence or absence of an extremum, the following values are required: gradient 

norm 

2

2

2

1

grad 











+












=

x

w

x

w
N , as well as the principal minors of the Hessian matrix: 

2

1

2

)1(
x

w
M




=  and 

2

21

2

2

2

2

2

1

2

)2( 











−








=

xx

w

x

w

x

w
M . 

 

These values for points };{},;{ )(2)(1)(2)(1 BBAA xxxx  and };{ )(2)(1 CC xx  as well as classification of the 

points according to Sylvester's criterion are given in Table 4.3. 
 
Note that the rather large value relative error of the obtained solutions is caused by the properties 
of the feedback function ssQ ln),(  = . It was used because allows you to find solutions in the 

form of formulas. 
 

Table 4.3 
 Solutions of system (4.8) in the vicinity of the point: 

 A B C 

1x  -1.979938116 -1.000000000 1.019246903 

2x  3.959876232 2.000000000 -2.038493805 

w  20.540376029 25.000000000 5.541662957 

gradN  3.2095
910−  0.2418

910−  9.4269
910−  

)1(M  8.454728203 -1.999999999 10.343449802 

)2(M  -30.390768491 3.999999996 32.308353346 
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Point type: No extremum (saddle point) Local maximum Local minimum 

 
If we limit ourselves to a numerical search stationary point, then we may use the function 

feedback 







−=

s
ssQ

1

2
),(


  in system (4.8). It allows us to obtain solutions with significantly less 

error only by decreasing the value parameter  . Results of solving this system at points 

};{},;{ )(2)(1)(2)(1 BBAA xxxx  and };{ )(2)(1 CC xx  for this case are given in tables 4.4(A), 4.4(B) and 

4.4(C). 
 
Now suppose that the feedback function used does not produce a solution with an acceptable 
error. In this case we can apply the procedure of iterative refinement of the solution using 
formulas similar to (3.5): 
 

,...,2,1,02,1)()1( ==−=+ Tj
d

xd
xx

j
TjTj


  

 
where T is the iteration number. 
 
Since   is now fixed, then for the clarifying vector you may enter a designation )(Tx . Then, 

according to the implicit function theorem, the components of this vector satisfy system of linear 
equations of the form: 
 
















−=




+








−=




+





,

,

2

2

)(22

2

2

)(1

21

2

1

2

)(2

21

2
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1
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w
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Where, 
 

( )

( )
.

2042
exp

)102(18

,
2042

exp
)102(124

21

22

2

2

21

2

12

2

2

21

22

2

2

21

2
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w
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x
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Table 4.4(A)} 

  1x  2x  1  2  w  

1.00 -1.934001409 3.868002818 0.325662654 0.674337346 21.44680679 
110−

 -1.993845902 3.987691805 0.332646728 0.667353272 20.14446196 
210−

 -1.999388464 3.998776928 0.333265357 0.666734643 20.01444462 
310−

 -1.999938885 3.999877769 0.333326542 0.666673458 20.00144445 
410−

 -1.999993889 3.999987778 0.333332654 0.666667346 20.00014444 
510−

 -1.999999389 3.999998778 0.333333265 0.666666735 20.00001444 
610−

 -1.999999939 3.999999878 0.333333327 0.666666673 20.00000144 
710−

 -1.999999994 3.999999988 0.333333333 0.666666667 20.00000014 
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810−
 -1.999999999 3.999999999 0.333333333 0.666666667 20.00000001 

910−
 -2 4 0.333333333 0.666666667 20 

1010−
 -2 4 0.333333333 0.666666667 20 

Solution: -2 4 

3

1
 

3

2
 

20 

 
Table 4.4(B)} 

  1x  2x  1  2  w  

1.00 -1.056966891 2.113933783 0.051140285 0.948859715 25.08881072 
110−

 -1.005063133 2.010126265 5.0124∙
310−

 0.994987624 25.00087682 
210−

 -1.000500626 2.001001251 5.0012∙
410−

 0.999499875 25.00000875 
310−

 -1.000050006 2.000100013 5.0001∙
510−

 0.999949999 25.00000009 

410−
 -1.000005000 2.000010000 5.0000∙

610−
 0.999995000 25 

510−
 -1.000000500 2.000001000 5.0000∙

710−
 0.999999500 25 

610−
 -1.000000050 2.000000100 5.0000∙

810−
 0.999999950 25 

710−
 -1.000000005 2.000000010 5.0000∙

910−
 0.999999995 25 

810−
 -1.000000001 2.000000001 5.0000∙

1010−
 0.999999999 25 

910−
 -1 2 5.0000∙

1110−
 1 25 

1010−
 -1 2 5.0000∙

1210−
 1 25 

Solution: -1 2 0 1 25 

 

Let the assumption of continuity second derivatives of the function ),,( 21 xxw   according to all its 

arguments is valid in some compact space containing the point C. Then we can assume that 
process (4.10) will converge to point C for a sufficiently small positive   due to the principle of 
contraction operator. 
 
Results of the corresponding calculations for the problem being solved are given in table. 4.5, in 

which the following notations are used: 
2
2

2
1 xxF +=  and 2

2
2

1 )2()1(25 −−+−= xxG . 

 
Table 4.4(C)} 

  1x  2x  1  2  w  

1.00 1.057334324 -2.114668648 0.660530720 0.339469280 6.443182771 
110−

 1.006069204 -2.012138408 0.665995028 0.334004972 5.144427985 
210−

 1.000610687 -2.001221375 0.666598840 0.333401160 5.014444275 
310−

 1.000061107 -2.000122214 0.666659877 0.333340123 5.001444443 
410−

 1.000006111 -2.000012222 0.666665988 0.333334012 5.000144444 
510−

 1.000000611 -2.000001222 0.666666599 0.333333401 5.000014444 
610−

 1.000000061 -2.000000122 0.666666660 0.333333340 5.000001444 
710−

 1.000000006 -2.000000012 0.666666666 0.333333334 5.000000144 
810−

 1.000000001 -2.000000001 0.666666667 0.333333333 5.000000014 
910−

 1 -2 0.666666667 0.333333333 5.000000001 
1010−

 1 -2 0.666666667 0.333333333 5 
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Solution: 1 -2 

3

2
 

3

1
 

5 

 
Table 4.5. 

T )(1 Tx  )(2 Tx  )(1 Tx  )(2 Tx  )1(1 +Tx  )1(2 +Tx  )1( +TF  )1( +TG  

0 
 

1.019246
903 

-
2.038493
805 

-
0.018868
520 

0.037737
040 

1.000378
383 

-
2.000756
765 

5.003784
542 

4.992431
632 

1 
 

1.000378
383 

-
2.000756
765 

-3.7824∙
410−  

7.5648 ∙
410−  

1.000000
143 

-
2.000000
286 

5.000001
431 

4.999997
138 

2 
 

1.000000
143 

-
2.000000
286 

-1.4321∙
7

10
−

 

2.8612 
7

10
−

 

1 -2 5 5 

3 1 -2       

  1 -2 0 0 1 -2 5 5 

 
FEEDBACK FUNCTIONS IN GAME THEORY PROBLEMS 

One of the areas of mathematical modeling that uses the minimax (or maximin) operator is game 
theory. 
 
Since the feedback function method there is a tool for searching minimax values, then the main 
features of its application can be considered for the case of a standard game problem [Fudenberg, 
1991]. However, we complicate the condition of the tasks so to demonstrate the capabilities 
feedback method in full. 
 
Suppose we need to find optimal strategies opposing players for a known zero-sum payment 
matrix. We consider the following version of the task. 
 
Let we have two players: first A and second B. Each of them has its own set of strategies with 

numbers nj ,1=  and mi ,1=  respectively. The elements of the payment matrix are numbers ij . 

Here ij  equal to the winning values for player A and loss for B, subject to the first player's choice 

of strategy is j and for the second is i. We will also assume that the elements of the payment matrix 

are fairly smooth functions of a parameter vector ( ) ,,,,
T

21 = Kpppp   where   is a domain 

in KE . 

We denote the vector of mixed strategy of player A as ( ) ,,,,
T

21 nxxxx =  where jx  is the 

probability of choice the first player of the strategy with number j. The optimal payoff of the first 
player v  is the solution to the linear parametric programming problem: 
 

maximize by },{ vx : function v  

under conditions: ;1;,10
1

== 
=

n

j

jj xnjx    (5.1) 


=

=
n

j

jij mivxp
1

,1)( . 
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As noted in the introduction, the solution to problem (5.1) is the dependence  

pp vx , . The 

dependence may not be defined in everything 1+nE , may not be a function of p, and (in the case 
of functionality) have no derivatives with respect to the components of p. A detailed description 
of the use of feedback functions to solve parametric problems is given in [Umnov, 2023]. 
 

The value 
=

n

j

jij xp
1

)(  is a mathematical expectation player's winnings A, when player B chooses 

strategy i. It is also known from game theory that optimal mixed strategy of player B 

( )T21 ,,, m =  is a solution to the problem dual to problem (5.1): 

 
minimize by },{    function   

under conditions: ;1;,10
1

== 
=

m

i

ii mi        (5.2) 


=

=
m

i

iij njp
1

,1)(  . 

The quantity 
=

m

i

iij p
1

)(   is a mathematical expectation loss of player B, when player A chooses 

strategy j. The solution to problem (5.2) will be denoted by  

pp  ,  . Let also the components of 

the vector p and parameter 0  be fixed.  
 
We use the method of feedback functions as a search for stationary points auxiliary function 
 

 
==== =

+−












+−−













−−=

m

i

i

n

j

j

n

j

j

m

i

n

j

jiji RxRxxpvvpvxU
1111 1

),(),(1)(),,,,,(  .

 (5.3) 
 
The stationarity conditions for (5.3) are determined by the following system of equations 
 















==+−

=−=−

==−−







=

==

=

.,10),()(

,01,01

,,10),()(

1

11

1

n

j

ijij

n

j

j

m

i

i

m

i

jiij

miQvxp

x

njxQp







    (5.4) 

 

In [Umnov, 2019] it is shown that KEp  system (5.4) is uniquely solvable. In this case, the 

equalities are true for ),( pv   and ),( p : 

+→
= pvpv ),(lim

0



 and 

+→
= pp 


),(lim

0
. 

 
Theorem 2.3 remains valid if parameter   is replaced with any of the components of the vector 

p. Therefore, functions ),( pv   and ),( p  can be used as smooth approximations of 

dependencies 

pv  and 

p .  
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Let, say, the second-order derivatives of )(pij  be continuous. Then to solve problems we can 

use Taylor approximations of functions ),( pv   and ),( p  up to the second order inclusive. For 

example, as it was done in [Umnov, 2023], let's apply to system (5.4) both rule for differentiating 
a composite function and theorem about implicit functions. This will allow us to get 
 

( ) .,1
)(

,,,,,'
1 1

Kt
p

p
xpvx

p

U
U

m

i

n

j t

ij
ij

t

pt
=




=




= 

= =


    (5.5) 

 

Function (5.5) is a smooth approximation of ),(grad pv
p

 . 

 
Let us now demonstrate the use of feedback functions to solve a minimax problem with a 
payment matrix, depending on two scalar parameters p and q, 
 

12119

875

43251

),(

q
p

qp

qpDij

−−

=  ,     (5.6) 

 
where ]15,0[p  and ]15,0[q . 

 

It is clear that values 





=

==
),(maxmin),(

4,13,1
maxmin qpDqpD ij

ji
 and 





=

==
),(minmax),(

3,14,1
minmax qpDqpD ij

ij
 

are continuous, piecewise linear functions of p and q. To explore other properties of ),(maxmin qpD  

and ),(maxmin qpD , we use their smooth approximations obtained by the method of feedback 

functions. From (4.1) and (4.2) we have 

1
4
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1

maxmin

),(
expln),,(
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
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i j
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 . 

 

Isoline systems for functions ),,(maxmin qpD   and ),,(minmax qpD   at value 05.0=  are shown in 

Fig. 5.1 and 5.2 respectively. These pictures also show their meanings at some characteristic 
points. 
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Fig. 5.1. System of isolines for function ),,(maxmin qpD   

 

 
Fig. 5.2. System of isolines for function ),,(minmax qpD   

 
It is known that a solution to the pair of problems (5.1) − (5.2) in mixed strategies exists for any 
payment matrix. However, solutions in pure strategies} are of particular interest. Recall that 
solutions in pure strategies have all components equal to zero, except one, equal to 1. 
 
The condition for the existence of solutions in pure strategies is the following fact. The payment 

matrix has a saddle element, that is, the element 

ij , for which minmaxmaxmin DDij == . The 

fulfillment of this condition is obvious depends on the values of the parameters p and q. In Fig. 5.3 

is shown isoline system for a function ),,(),,( minmaxmaxmin qpDqpD  −  at 05.0= . Points where 

a saddle element exists are marked here in black. 
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Fig. 5.3 System of isolines for function ),,(),,( minmaxmaxmin qpDqpD  −  

 

 
Fig. 5.4. System of isolines for function ),,( qp  at scall 1.00 

 
A detailed study of the properties auxiliary function U may require its numerical characteristics 

with higher accuracy. To get this we can use in (5.4) feedback function 







−=

s
ssQ

1

2
),(


  instead 

of function ssQ ln),(  = . As an illustration in Table 5.1a and 5.1b show the values of the 

argument’s stationary points auxiliary function (5.3) at 9,10 == qp  for different  . Note also 

that in this example derivatives (5.5) are found according to the formulas 2212'  xxU p +−=  and 

3212'  xxU q +−= . 

 
Table 5.1a 

  1x  2x  3x  4x  v  ),,,,,,( qpvxU   
110−

 0.01014302
8 

0.94688825
5 

0.01706577
4 

0.02590294
3 

5.84346357
5 

5.783467242 

210−
 1.0016

310−  

0.99481683
2 

1.6712 
310−

 

2.5103
310−  

5.98492843
1 

5.966469792 
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310−
 1.0002

410−  

0.99948316
6 

1.6671
410−  

2.5010
410−  

5.99849927
8 

5.995491834 

410−
 1.0000

510−  

0.99994833
2 

1.6667
510−  

2.5001
510−  

5.99984999
3 

5.999434015 

510−
 1.0000

610−  

0.99999483
3 

1.6667
610−  

2.5000
610−  

5.99998500
0 

5.999931888 

610−
 1.0000

710−  

0.99999948
3 

1.6667
710−  

2.5000
710−  

5.99999850
0 

5.999992038 

710−
 1.0000

810−  

0.99999994
8 

1.6667
810−  

2.5000
810−  

5.99999985
0 

5.999999089 

Solution
: 

0 1 0 0 6 6 

 
Table 5.1b 

  1  2  3    pU '  qU '  
110−

 0.972216214 0.012489251 0.015294535 6.101300739 -0.908754189 -0.906097899 
210−

 0.997097639 1.2500
310−  1.6524

310−  6.010009038 -0.990686004 -0.990285707 
310−

 0.999708477 1.2500
410−  1.6652

410−  6.001000087 -0.999066859 -0.999025357 

410−
 0.999970835 1.2500

510−  1.6665
510−  6.000100001 -0.999906669 -0.999902504 

510−
 0.999997083 1.2500

610−  1.6667
610−  6.000010000 -0.999990667 -0.999990250 

610−
 0.999999708 1.2500

710−  1.6667
710−  6.000001000 -0.999999067 -0.999999025 

710−
 0.999999971 1.2500

810−  1.6667
810−  6.000000100 -0.999999907 -0.999999903 

Solution: 1 0 0 6 -1 -1 

 
The values of parameters p and q for which saddle elements exist are not unique. This allows us 
to generalize the formulation of the problem under consideration. For example, you can consider 
the following problem. 
 
Example 5.1 

For the game with payoff matrix (5.6) find parameter values p and q, at which the value maxminD  

has a maximum on the set of pure strategies. 
 
Solution.  
1°: Since the existence of a solution in pure strategies requires the existence of a saddle element 
in the payment matrix, the formulation of this problem can look like: maximize by },{ qp  function 

),(maxmin qpD under conditions ,150,150  qp .0),(),( minmaxmaxmin =− qpDqpD  

 
2°. Let's use the method penalty functions [Fiacco, McCormick, 1968] to estimate the required 
values of p and q. This method may consist of unconditionally maximizing the auxiliary function 
of the form 
 

( )2minmaxmaxminmaxmin ),(),(
2

1
),(),,( qpDqpDqpDqp −


−= for a small positive value of  . 

 



Applied Sciences Research Periodicals (ASRP) 

 
 

39 

The smoothing property of the penalty function method is illustrated in Fig. 5.4−5.6. These figures 
show a system of isolines of the function ),,( qp  at three different scales. These figures also 

show the values of the function ),,( qp  at 01.0= . 

 

 
Fig. 5.5. System of isolines for a function ),,( qp  at scale 0.10 

 

 
Fig. 5.6. System of isolines for a function ),,( qp  at scale 0.01 

 
 
The maximum of function ),,( qp  is 8.28158929. It is with 01.0=  at p=8.325815949 and 

q=8.348452929. The norm of the gradient of the function ),,( qp  at this point is equal to 
6104541.1 − . 

 
3°. To obtain an exact solution in the example 5.1 it is convenient to use the method linear 
extrapolation. This method has already been considered in detail for problem 4.1. Therefore, here 
we will limit ourselves to discussing the final estimates obtained using formulas similar to (4.12): 

38.33333333=p  and 38.33333333=q . Table 5.2a and 5.2b show solution of system (5.4) for 

these values of p and q at different  . 
 

Table 5.2a 
  

1x  2x  3x  4x  v  ),,,,,,( qpvxU   
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110−
 9.1459

310−  

0.956169686 0.014420881 0.020263533 8.058310734 7.755364268 

210−
 9.1515

410−  

0.995611686 1.4436 
310−

 2.0296
310−  8.305809423 8.241009057 

310−
 9.1516

510−  

0.999561163 0.000144361 2.0296
410−  

8.330580921 8.320647039 

410−
 9.1516

610−  

0.999956116 1.4436
510−  

2.0296
510−  

8.333058092 8.331719316 

510−
 9.2730

710−  

0.999995508 1.4740
610−  

2.0903
610−  

8.333306242 8.333137414 

610−
 1.3369

710−  

0.999998903 2.8735
710−  

6.7565
710−  

8.333330906 8.333311038 

710−
 1.5512

810−  

0.999999720 4.0876
810−  

2.2400
710−  

8.333333009 8.333330847 

Solution: 0 1 0 0 

3

25
 

3

25
 

 
Table 5.2b 

  1  2  3    pU '  qU '  
110−

 0.657125682 0.217912820 0.124961498 8.337816823 -0.419962024 -0.508839261 
210−

 0.657393186 0.217761533 0.124845281 8.333377313 -0.437702412 -0.530210918 

310−
 0.657395820 0.217760043 0.124844137 8.333333772 -0.439442849 -0.532317980 

410−
 0.657395847 0.217760028 0.124844125 8.333333338 -0.439616526 -0.532528351 

510−
 0.640002794 0.234666153 0.125331054 8.333333333 -0.405334820 -0.514669428 

610−
 0.410689714 0.280293397 0.309016889 8.333333334 -0.130396173 -0.101672713 

710−
 0.257461958 0.457547439 0.284990604 8.333333333 0.200085425 0.027528638 

Solution:       

3

25
 

    

 

Note that for 
3

25
=p  and 

3

25
=q  saddle elements of matrix (5.6) exist. These are elements 

2212,DD  and 32D . But the solution in Table 5.2b is not a solution in pure strategies to problem 

(5.2). 
 
The point is that the solution to problem (5.2) is ambiguous, while the solution to problem (5.1) is 
overdetermined. The solution to problem (5.2) is any ordered triple of non-negative numbers 

 

321 ,,   such that 1321 =++   . 

 

Among them, there are three in pure strategies. One such solution with 0,1,0 321 ===    

shown in Table 5.3a and 5.3b.  
 

For example, this solution can be obtained by adding to system (5.4) the inequality 12 x . It has 

the same optimal objective function value, as the solution in table. 5.2a and 5.2b. Other solutions 

in pure strategies 0,1,0 321 ===    and 0,1,0 321 ===    are found similarly. 
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Table 5.3a 
  1x  2x  3x  4x  v  ),,,,,,( qpvxU   

1510−
 0 1 0 1.5000

1510−  8.333333314 8.333333333 

Solution: 0 1 0 0 

3

25
 

3

25
 

 
Table 5.3b 

  1  2  3    pU '  qU '  
1510−

 1.6928
810−  0.999999979 1.7177

810−  8.337816823 0.999999962 2.4870
1010−  

Solution: 0 1 0 

3

25
 

    

 
CONCLUSION 

This article discusses methods for searching for multiple extrema, as well as minimax (maximin) 
values. 
 
Suggested method consists in constructing a smooth approximation of saddle points modified 
Lagrange function. This modification uses functions that implement feedback within optimality 
conditions. The stationarity conditions for the modified Lagrange function are similar to the 
conditions of the Karush-Kuhn-Tucker theorem. But they do not contain both non-negativity 
restrictions for variables and conditions of complementary non-rigidity. This article also 
formulates the properties of feedback functions, which provide the required smoothness for 
approximations. A possible direction of development of the proposed method is increasing its 
efficiency. According to the authors, this is the subject of special research. However, some ideas 
can be formulated here already. 
 
For example, you can reduce the dependence of the calculation process on initial approximations. 
To do this, it is enough to replace the non-negative variables in (2.9) with their absolute values. 
That is, instead of system (2.9), we will solve the system 
 

( )

( )






=

=

++

++

.,,,,,,,,,,,,,,grad

,,,,,,,,,,,,,,,grad

121121

121121

oxxxxxU

oxxxxxU

mppnqq

mppnqq

x










    (6.1) 

 

The solution process to (6.1) can end in any orthant of mn EE  . But the solution to system (2.9) 

will obviously be obtained from the solution to (6.1) replacing the found component values x  and 

  with their absolute values. Note that this technique was used to solve all the problems 
discussed above. Also, according to the authors, it would be interesting to investigate 
convergence of solution of system (2.9). Especially in case when one of the problems of the dual 
pair is ill-conditioned, and the second is overdetermined. This situation, for example, occurs for 
problems (5.1) − (5.2). 
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Abstract: 
In the steppe zone, foxes use fields, meadows and steppe areas characterised by good 
visibility during daytime rest. A total of 37.8% of individuals were recorded in these 
areas, with the highest numbers on the coasts of the Dnipro (48.9%), Azov (43.3%) and 
Black (29.9%) Seas. In forested areas, foxes rested most often in deciduous (12.5%) and 
pine plantations (2.8%), while in field areas - in forest belts (6.7%), uncultivated fields 
(16.2%), and in orchards and vineyards (7.6%). However, the largest number of 
individuals (32.6%) was found in thickets of southern reeds (Phragmites australis) and 
other aquatic plants. In the Black Sea region, more than 45% of foxes spent the day in 
reed beds. This resulted in a high population density (26.6±1.37 individuals/10 ha or 
4.4±0.18 per reed bed). The probability of encountering predators in such areas, which 
usually do not exceed 1-2 ha (49.4%), is very high - out of 231 surveyed sites, animals 
were absent only in 2. The location of foxes' dwellings, which they create to breed their 
young, is peculiar: the main number of dens (about 23%) was located on the forest 
margins, somewhat less - in the treeless valleys of small rivers, as well as on the banks 
of estuaries. In the Black Sea region, many burrows (18.5%) were found in floodplains 
of large rivers (Danube, Dniester, Southern Bug and Dnieper), and in the Azov region - 
on sea spits and islands (14.3%), as well as in numerous forest belts (11.5%). After the 
dust storms of 1969, many of these sites were covered with high earthen berms made 
of wind-blown black soil. This improved conditions for dens of all predatory animals, 
but especially for foxes. Already in the early 20th century in Ukraine, they began to 
avoid open steppes and fields, although they made holes in haystacks that had been 
stored for many years and used to feed sheep. 
 
Keywords: vox, steppe zone, Ukraine, population, dynamics, structure, biotopes. 

 

 
INTRODUCTION 

The most numerous predators of the steppe zone are undoubtedly the common fox. Since it is 
less picky than other animals in choosing places to rest and feed, the geographical variability of 
its biotope distribution is quite high. In Germany, most foxes rest in dense shrubs and meadows 
(Pielowski, 1976), in Denmark - in swamps (Jensen, 1968), in the mountainous regions of 
Azerbaijan - in rock crevices or small grottoes (Gidayatov, 1965), in Spain - in blackberry bushes 
(Blanco, 1986), etc. The fox can be found anywhere: in fields, meadows, forests, gardens, and 
even in settlements. There are cases of repeated visits of this predator to Odesa, Zaporizhzhia, 
Dnipro, Lviv and other large cities, and there is nothing to say about villages. In Western Europe, 
urban populations of foxes have formed, which are typical for Copenhagen (Jensen, 1968), Bristol, 
London (Harris and Smith, 1987), Berlin (Börner u. a., 2009) and other cities. Therefore, the 
purpose of our research was to study the biotopic distribution of the common fox in the steppe 
regions of Ukraine, which are characterised by regular intensive agricultural development. 
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MATERIALS AND METHODS 
In 1978-2014, during hunting (12.X - 22.I) in the southern districts of Zaporizhzhia and Kherson 
(Azov Sea), Mykolaiv and Odesa (Black Sea), northern districts of Zaporizhzhia, Dnipro, Donetsk 
(Dnipro) regions, more than 3000 individuals of the common fox were recorded. In most cases, 
the animals were taken by hunters using different hunting dogs. In the Black Sea region, these 
were hunting hounds, in the Azov Sea region - Foxterriers and Jagdterriers, in the Dnipro River 
region - Siberian huskies. In those years, the fur of 1 common fox was worth 100-150 USD, and 
therefore its extraction was economically very profitable for a hunter. This contributed to keeping 
the number and density of the predator population at a low and stable level (1-2 individuals/ 1 
thousand hectares), as defined by the World Health Organisation. In addition, several tens of 
thousands of foxes were counted in the hunting grounds of the steppe regions of Ukraine during 
special surveys during the time prohibited for hunting. The collected scientific material was 
processed, if necessary, by regression and correlation analyses using the CSS software package 
(Microsoft-Corpiring). In most cases, the 95% confidence level (P = 0.05) was used when 
comparing fox population densities. 
 

DISCUSSION 
In the steppe zone, the first category includes fields, meadows and steppe areas characterised by 
very good visibility. In such places, foxes build their dens both on flat surfaces and on small 
elevations, which can be piles of stalks of various crops, earthen blocks, mounds, straw piles, etc. 
These animals often rest on the ground in open areas during the rut. At the time of high prices for 
fox fur, there was even a specialisation of hunters who used binoculars to track down animals 
resting in the open, carefully approach them within shooting distance and often kill them. The 
location of daytime fox dens in open areas is very typical for steppe reserves (Askania Nova, 
Chornomorskyi, Ukrainian Steppe). It is also typical for other regions, including the forest-steppe 
(Polushina, 1967) and forest zones, taiga and even tundra (Geptner et al., 1967). In Prydniprovia, 
37.8% of foxes were recorded in fields, meadows and steppe areas (Table 1).  
 

Таble 1: Biotopic distribution of foxes in 1978-2014 
B i o t o p s Dnieper region* Black Sea region  Azov Sea region Total: 

Аbs. % Аbs. % Аbs. % Аbs. % 

Meadows 76 9.4 275 17.5 150 22.7 501 16.5 

Reed thickets 98 12.1 737 46.9 155 23.6 990 32.6 

Deciduous forests 93 11.5 221 14.0 64 9.7 378 12.5 

Coniferous forests 10 1.2 58 3.7 18 2.7 86 2.8 

Gardens, vineyards 109 13.5 45 2.9 77 11.7 231 7.6 

Fields 194 24.1 195 12.4 103 15.7 492 16.2 

Forest belts 103 12.8 41 2.6 59 9.0 203 6.7 

Steppe areas 124 15.4 – – 32 4.9 156 5.1 

Total: 807 100.0 1572 100.0 658 100.0 3037 100.0 
Data from: *N. Lebedeva, V. Domnich (1998) 

 
The reason for this is the high density of their population in this region, which led to the frequent 
appearance of predators in field areas where animals hunt and rest. The second group of habitats 
chosen by foxes for daytime rest includes dense thickets of grass, woody shrubs and hygrophytes. 
In forest areas, foxes often rest in unsparse pine saplings and bushes, in field areas - in forest belts, 
uncleared or abandoned fields and in gullies. However, most often the fox spends the night in 
reed beds (Figure 1), and then in cattails and other aquatic plants that line the banks of all steppe 
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rivers. According to our data, when hounds were used in studies, more than 45% of foxes in the 
Black Sea region rested during the day mainly in reed beds (Rozhenko, 2007). 
 

 
Figure 1: Reedbeds near Zaporizhzhia (A); a hunter with foxes harvested near Odesa (B) 

 
Moreover, several animals rested in these places side by side, having come here independently of 
each other (Gursky, 1979). This creates a very high density of foxes in reed beds (26.6±1.37 
individuals/10 ha or 4.4±0.18 per 1 bed with a maximum number of 17 individuals). The probability 
of encountering predators in such places is very high, as out of 231 surveyed plots, animals were 
absent in only 2! The area of such plots usually does not exceed 1-2 ha (49.4%), although, of 
course, foxes use larger reed beds for rest (Rozhenko, 2006). It is interesting to note that in areas 
of frequent hunting with hunting dogs, which used to be very popular in the Ukrainian Black Sea 
region, foxes rarely stayed for a day in dense reed beds of less than 0.5 ha. 
 
This selectivity is not well understood, but it is possible that it is the result of learning from the 
experience of animals that have survived hunting. In other regions, where animals are not 
disturbed much, their resting places can be not only small reed beds, but also small islands of grass 
in meadows and fields. The reason for the significant dynamics in the use of habitats by foxes is 
the large area of individual plots, which is generally characteristic of predatory animals, and the 
significant dispersion of individuals. For example, in Denmark, based on the tagging of almost 500 
animals, it was found that during the first year of life, 85% of young females and 75% of males 
travelled within ~15 km of their birthplace, and 5 individuals (3 males and 2 females) were 
captured at a distance of 55-140 km (Jensen, 1968). Similar results were obtained in the Kyiv 
region, where within 1-2 years most of the tagged foxes dispersed within a radius of 15-30 km, a 
few within a radius of 2-5 km, and only one travelled over 120 km (Heptner et al., 1967).  
 
In the Voronezh Reserve, out of 123 foxes, most travelled to different habitats within 1-6 km, 
although one young male travelled 50 km in one year (Sapelnikov 1999). In Norway, several 
animals migrated up to 30 km in 9 years (Lund and Munthe-Kaas, 1967). At the same time, in the 
United States, cases were recorded when one female moved 16 km away from the tagging site in 
more than 8 years (Tular, 1983), and another young female travelled 395 km in one year (Ables, 
1965). However, when there is a high concentration of animal prey, the area of an individual fox's 
territory may be small. For example, in Central Spain, in an area with many wild rabbits and a 
household waste dump, the home range of an adult male fox over 7 months of observations was 
only 113 ha, and the length of a daily walk was ~5 km. The predator used only ~35% of the occupied 
territory per day (Blanco, 1986).  
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The territorial distribution of foxes' dens, which they create for breeding, is quite peculiar and 
differs significantly from the biotopic distribution of adult animals, as the majority of dens (about 
23%) were located on the edges of natural forests, somewhat less in the treeless valleys of small 
rivers, as well as on the banks of estuaries (Table 2). 
 

Таble 2: Territorial distribution of fox burrows in 1978-2013 
B i o t o p s Black Sea region Azov Sea region Total: 

Аbs. % Аbs. % Аbs. % 

Sea coast 31 6.4 64 14.3 95 10.2 

Shores of estuaries 111 23.0 68 15.1 179 19.2 

Valleys of small rivers 46 9.6 136 30.3 182 19.6 

Valleys of large rivers 89 18.5 – – 89 9.6 

Deciduous forests 133 27.6 76 16.9 209 22.5 

Coniferous forests 32 6.6 12 2.7 44 4.7 

Gardens, vineyards 11 2,3 6 1.3 17 1.8 

Fields 6 1.2 3 0.7 9 0.9 

Forest belts 23 4.8 84 18.7 107 11.5 

Total: 482 100.0 449 100.0 931 100.0 

 
In the Black Sea region, many burrows (18.5%) were found in floodplains of large rivers (Danube, 
Dniester, Southern Bug and Dnieper), whereas in the Azov region – on sea spits and islands 
(14.3%), as well as in numerous forest belts (11.5%). In many of them, after the dust storms of 
1969, high earth ramparts of wind–borne black soil were formed.This improved the conditions for 
burrowing by all species of predatory animals, but especially for foxes. 
 
Regular use of dens as resting shelters was observed only in adult females during the breeding 
season and also in their pups. The latter visit their birthplaces for some time after brood 
separation and often hide in dens. As it is more comfortable and safe underground, this is 
observed both during inclement weather and very hot summer days. In winter, foxes very rarely 
rest in their burrows - usually in rainy or snowy weather. They are mostly avoided by predators 
when not needed. Fox dens can vary greatly in their structure due to the landscape features of the 
area and their purpose. 
 
Both simple and complex burrows are very common, but are used in different ways. For example, 
in the steppe zone of Ukraine, 24.2% of the 219 burrows detected were classified as brood 
burrows. Of these, 1.8 % were simple straight or slightly branched tunnels, while 22.4 % were 
complex multi-storey structures (Table 3), covering an area of up to 130 sq m. 

 
Таble 3: Characteristics of common fox burrows (%)* 1 – brood, 2 – visited, 3 – unvisited 

Study areas 
 

n Simple burrows Complex burrows 

1 2 3 1 2 3 

Biryuchiy Peninsula (Sea of Azov) 101 – 25.8 24.7 18.8 19.8 10.9 

Khortitsa Island (Dnieper River) 46 4.4 15.2 13.0 21.7 26.1 19.6 

Deciduous forests (Zaporizhzhya region) 45 – 11.1 8.9 33.3 28.9 17.8 

Kinburn Spit (Black Sea) 27 7.4 25.9 14.8 18.5 18.6 14.8 

Total: 219 1.8 20.6 17.8 22.4 22.8 14.6 
*Data from V. Domnich, N. Lebedeva (2000) 
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Complex burrows, although very common, were found with almost equal frequency in different 
study areas, while simple burrows were more typical of sea spits and sandy islands (Domnich and 
Lebedeva 2000). In the south of Ukraine, where agrocenoses dominate, quite a few adult and 
juvenile animals settle in straw haystacks, regardless of their location. And, of course, in the flat 
terrain, predators use all the ancient mounds, which are called "graves" in the south. In Odesa and 
Mykolaiv regions, foxes often dig burrows in gully forests, on the slopes of beams, in forest belts, 
in thorns, and in dams of former ponds (Gursky, 1979). In western Ukraine, they typically use 
ravines, gullies, valleys, hollows, gullies, karst hollows and shrubs (Polushyna, 1967). In the 
Mordovian Reserve, which is located in the taiga zone, foxes prefer burrows in pine forests (70%), 
less often in mixed forests (15%), old clearings (10%) and deciduous stands (5%) (Borodin, 1976).  
 
The swarming activity of large rodents has a great influence on the location of fox dens. In 1975, 
we even found a fox litter in a burrow occupied by a family of beavers (Volokh, 1979). On the 
territory of Askania Nova Reserve, 62.5 % of fox dens (n = 49) were located in steppe marmot 
colonies (Dumenko, 2001). We observed many such cases in many northern districts of the 
Luhansk region (Fig. 2), where this rodent is quite numerous. Naturally, on the eve of birth and 
during the rearing of young foxes, they try not to stray far from their dwellings. Usually, during 
this period of life, the size of their individual territory decreases to 0.31-2.33 sq. km (Kolb, 1986), 
although the number of habitats visited by adult animals can be quite large. At this time, the fox 
population is characterised by an uneven distribution of individuals, which is associated with its 
sedentary lifestyle.  
 

 
Figure 2: Fox cubs at the steppe marmot hole (Lugansk region, «Streltsovskaya Steppe 

nature reserve», 2009). Photo by A. Volokh 
 
The distance between brood burrows in the Ukrainian steppe can reach 2.7±0.14 km (Dumenko, 
2001), whereas, for example, in the south of Western Siberia – 7.0±0.8 km (Poleshchuk & Sidorov, 
2007). Interestingly, in the latter case, the distance between dens with single animals was 
significantly greater (11.1±2.0 km) than between brood dwellings. Occupancy of the same den by 
foxes occurs irregularly. It is known that in Siberia one burrow was used by these predators 1–2 
and only once – 4 years in a row. Even during one reproductive period in Askania Nova Reserve, 
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these animals moved broods to a distance of 52.6±10.3 m in 94.7% of cases, using 2.6±0.22 dens 
(Dumenko, 2001). 
 
In general, red foxes prefer frequent changes of dwellings, regardless of their biotopic habitat. For 
example, in the Azov region, burrows located on sea spits are rarely used again – within 2-3 
months they crumble and become small holes. Even such very comfortable places in the steppe 
zone as ancient burial mounds and forest tracts are not used by foxes for burrowing every year. 
As early as the early 20th century, it was noted that as the steppe biota in Ukraine was 
transforming, the red fox began to change the places used for breeding (Brauner, 1914). 
 
It began to avoid open steppes and fields, although it had previously willingly burrowed in 
haystacks that had been stored for many years and used to feed sheep. In the 1960s, this predator 
began to make frequent burrows in the precipices of ravines, among rocks, as well as in dense 
bushes and forest tracts (Formozov, 1962). Very few fox dens are now also found in fields, as all 
agrocenoses undergo regular structural changes. Usually, animals create dwellings in such places 
only in case of very high intraspecific competition, using even insignificant elevations or 
depressions of the ground surface for this purpose. 
 

CONCLUSIONS 
1. In the steppe zone of Ukraine the common fox most often uses reed thickets for daytime 

rest, and then - meadows and fields.  
2. This predator prefers forested areas for making dens, although it often makes them in 

steppe and meadow areas located on the slopes of river valleys.  
3. Despite the scarcity of dwelling sites, old burrows are rarely reused. 
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Abstract: 
Based on the article „Calculation of Dark Energy and Dark Matter “[1] the article 
„Commentary about Calculation of Dark energy and Dark Matter “emerged [2]. The 
Foundation of a Dark Energy Theory is formulated there. 
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INTRODUCTION 

Nobody knows what Dark Energy actually is. Dark Energy and Dark Matter cannot be observed 
directly. It is thought to be responsible for the accelerated expansion of the universe. Some 
considerations have been made; however, they have not yet produced fruitful results to date. In 
particular, it was not possible to carry out an exact calculation of the Dark Energy. With the present 
approach, this goal has probably been achieved. 
 

DERIVATION 
The exact calculation of Dark Energy can be achieved in particular using the formula 
 

        Ed = h tu / tp
2                                                                                                        (1) 

 
It is derived in the article „Calculation of Dark Energy and Dark Matter “[1]. The theoretical result 
is confronted with the numerical value calculated from the MAX PLANCK Institute for radio 
Astronomy. Excellent matching of numerical values resulting in three independent paths makes 
the approach plausible. 
 

CONCLUSION 
Thus, the Foundation of a Dark Energy Theory is laid. 

 
DEFINITION OF SYMBOLS USED IN THE FORMULA (1) 

Ed = Dark Energy 
tu = age of the universe 
h = PLANCK quantum of action 
tp = PLANCK time 
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Abstract: 
The artificial triggering of tsunamis is increasingly modeled by the forced Korteveg de 
Vries (KdV) equation. But beyond this modeling, the biggest problem is knowing how 
to choose the excitations or external forces so that the solutions obtained are exact. In 
this article, we show how to choose the external force in the forced KdV equation. We 
also show that all the exact solutions obtained depend closely on the external force. 
Beyond all these demonstrations, we offer some solutions as well as their profiles. 
 
Keywords: KdV equation, tsunamis, solitary wave, solutions, external forces 

 

 
INTRODUCTION 

Since the discovery of the solitary wave by the Scottish engineer John Scott Russell, his first 
analytical sequences began to emerge in 1895, through the modeling of the KdV equation. This is 
how the KdV equations were at the center of the first beginnings of solitary wave theory [1-5]. 
Subsequently, the solitary wave theory became generalized in other transmission media such as 
optical fibers, atomic chains, electrical lines, plasmas, Bose-Einstein condensate, etc. [6-11]. The 
equations which most often generate solitary wave solutions being very complicated nonlinear 
partial differential equations, the development of the theory of solitons was carried out with 
mathematics theories. Numerous works have established mathematical techniques dedicated to 
the search for solitary wave solutions [11-18]. For some time, the solitary wave theory has been 
increasingly used to try to explain certain complex natural phenomena such as hurricanes, 
earthquakes, certain types of clouds and especially tsunamis. But as the ultimate goal of physics 
is to study natural phenomena to better understand them in order to use them to improve the 
living conditions of beings living on earth, researchers are on a permanent quest for tools to 
control these natural phenomena.  
 
But if we know that the KdV equation in its original form describes the dynamics of free 
propagation of solitary waves, we want to know how to artificially cause a tsunami. Thus, E. 
Pelinovsky was one of the very first researchers to use a forced KdV equation to describe the 
artificial or forced generation of seabed sliding and tsunamis [19]. To date, we have seen very little 
work that has been done in the sense of integrating the external force into the KdV equations 
[20,24]. But before returning to the forced KdV equation which is the subject of this article, it 
should be noted that this equation has attracted the attention of many researchers to this day. 
Numerous articles have been produced in this direction [25-27]. This article is part of the large list 
of works which are interested in marine waves and more precisely in solitary waves seen from the 
angle of KdV equations. Thus, the originality of this work rests on the construction of exact 
solutions of the forced KdV equations at the same time as the corresponding external forces. It is 
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not only a question of constructing simple solutions, but above all of obtaining solutions whose 
profiles are close to the profiles of the giant waves that can be observed during tsunamis. We 
specifically use ansatz solutions based on iB-functions [28-32] which have already shown their 
effectiveness in finding solutions in other studies. Thus, our work is organized as follows: In 
section 2, we present the model of the forced KdV equation which will be at the center of our 
analyses. In section 3, we present the method to be used to obtain the results; we will use the main 
iB-functions to construct the first series of solutions and the external forces in section 4. Section 
5 will use the secondary forms of the iB-functions to construct the second series of solutions and 
the external forces. Section 6 analyzes the profiles of the solutions and external forces obtained 
in the case where the main forms of the iB-functions are used. Section 7 analyzes the solutions 
and the external forces in the case where secondary forms of iB-functions are used. We end the 
work with a conclusion and some perspectives. 
 

FORCED KDV EQUATION MODEL 
As we mentioned in the introduction, one of the first models was made by E. Pelnovsky. This 
model is defined as follows 
 

( )3
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f x t
C

t x x x x

   
 
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+ + + =

           (1) 

 
where ( ),x t  represents the elevation of the water surface,  the coefficient of nonlinearity 

dependent on the water depth and the speed of the wave, C  represents the speed of the wave, 

  the dispersion coefficient and f

x




the external force where excitement. In this article, we adopt 

a more general model given by 
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where ( ),F x t  represents the external force or excitation. We pass into the proper reference frame 

of the wave by setting the change of variable 
0x t  = −  where  is equivalent to the spatial 

frequency of the wave and 
0  the angular frequency of the wave. The KdV equation becomes the 

equation with a single variable   and given by 
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The free propagation equation of KdV, that is to say its basic equation without a second member, 
is given by 
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In the following, we construct the general solution of (2) and (3) supported by some particular 
solutions. 
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METHOD USED 
The ansatz solutions used come from the two forms of iB-functions, notably the main form and 
the secondary form. The main and secondary form are defined respectively in dimension one by 
[30-32] 
 

 ( )
( )

( )
,

sinh
,

cosh

m

n m n
J





= ,      (5)  

 
and  

 ( )
( )

( )
,

sin
.

cos

m

n m n
T





=        (6) 

 
The two previous functions are linked by relationships 
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In the following, we use these two forms of iB-functions to constitute our ansatz solutions to 
construct. 
 

FIRST SERIES OF SOLUTIONS: USE OF IB-MAIN FUNCTIONS 
In this section we propose to construct the solutions of (3). To do this, we first start by solving this 
equation without a second member to get an idea of the general solution to equation (3) to 
construct. Thus, by seeking the solution of equation (4) in the form: 
 

( ) ( ),0 ,naJ  =       (9) 
 
where a  and n  are real numbers to be determined. Thus, inserting (9) into (4) leads to the 
equation 
 

 ( ) ( )( )3 3 2 3

0 1,1 2 1,1 3,11 2 0.n n nan C an J a nJ an n n J    + + +
 − − + − + + + =    (10) 

 
The search for values of n  for which certain terms of (10) come together gives 0n =  and 2n = . For 

0n = , we have a trivial solution. In the case where 2n = , equation (10) becomes 
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Equation (11) is verified if for 0a   ,we have 3

0 4C  = +  and 212 / .a  =  The solution to (4) 

under these conditions is given by 
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Solution (12) serves as a guide for us to choose the general form of solution of equation (3) to 
construct. Thus, we propose to subsequently construct the solution to equation (3) in the form 
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where ( )f  is an arbitrary function continuously differentiable in its domain of definition. The 

insertion of (13) in (3) supposes the evaluation of its different terms. Thus, we have 
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In expressions (14) to (17), f  , f   , f   denote respectively the first derivative of ( )f   with respect 

to  , the second derivative of ( )f  with respect to   and the third derivative of ( )f   with respect 

to .Insertion of terms (14) to (17) in the equation (3) allow us to have external strength under 
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And 
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The non-linear partial differential equation increasingly used to describe the generation of 
tsunamis is that of forced KdV, that is to say that of KdV subjected to an external force. The goal 
is to simulate an external force which can generate the tsunami which is embodied by the frenzied 
or brutal propagation of the solitary wave. This equation in this case will be corrected as follows 
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   

   

   
− + + +

   

= + + +
 

 (23) 

 
The choice of external force is very important, it must be adequate for the reaction to produce the 

expected effects. Thus, any solitary wave solution of the form ( ) ( ) ( )( )2

2,012 / ,J f    =  where 

( )f   is a continuously differentiable function in its domain is always an exact solution to equation 

(23). Thus, we can generalize the exact solution of the forced KdV equation (23) as follows 
 

( ) ( )( ) ( )( )
2 2

2

2,0

12 12
sec ,J f K h f K

 
   

 
= +  +    (24) 

 
Where is the dispersion coefficient of order 3,  the nonlinearity coefficient, K  an arbitrary 

constant and 
0x t  = − . 

 
Some Exact Solutions and External Forces 
In this subsection, we propose some exact solutions as well as the forced KdV equations that they 
verify. 
 
For ( ) cosf  =  the corresponding forced KdV equation is given by (23) as we have 

 

( )
2 5

1

144
cos sin ,F

 
  


=       (25) 

 

( )
2 5

2

216
cos sin ,F

 
  



−
=      (26) 

 

( ) ( )
2 5

3

3

24
5sin 4sin ,F

 
  


= − +     (27) 

 
And 
 

( ) ( )
2 5

3

4

288
sin sin .F

 
  


= − +      (28) 

 
The exact general solution in this case is given by 
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( ) ( ) ( )
2 2

2

2,0

12 12
cos sec cos ,J K h K

 
   

 
= +  +     (29) 

 
For ( ) secf h =  the corresponding forced KdV equation is given by (23) as we have 

 

( ) ( )
2 5

2 2

1

144
sec sinh 1 2sec ,F h h

 
   



−
= −     (30) 

 

( ) ( )
2 5

3 2

2

216
sec sinh 1 2sec ,F h h

 
   


= −     (31) 

 

( ) ( )
2 5

2 2 4 2

3

24
sec sinh 3 6sec 4sec sinh ,F h h h

 
     


= − − +

 
 (32) 

 
And 
 

( ) ( )
2 5

3 4 2

4

288
sec sinh sec sinh 1 .F h h

 
    



−
= −    (33) 

 
The exact general solution in this case is given by 
 

( ) ( ) ( )
2 2

2

2,0

12 12
sec sec sec .J h K h h K

 
   

 
= +  +    (34) 

 
For ( ) tanhf  =  the corresponding forced KdV equation is given by (23) as we have 

 

( )
2 5

5

1

288
sec sinh ,F h

 
  



−
=      (35) 

 

( )
2 5

5

2

432
sec sinh ,F h

 
  


=      (36) 

 

( ) ( )
2 5

4 2

3

48
sec 3 2sec ,F h h

 
  


= −     (37) 

 
And 
 

( ) ( )
2 5

2 4

4

288
sec sec 1 .F h h

 
  


= −     (38) 

 
The exact general solution in this case is given by 
 

( ) ( ) ( )
2 2

2

2,0

12 12
tanh sec tanh .J K h K

 
   

 
= +  +    (39) 
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For ( ) 2f  =  the corresponding forced KdV equation is given by (23) as we have 

  

( )
2 5

1

576
,F

 
 


=        (40) 

 

( )
2 5

2

864
,F

 
 



−
=       (41) 

 

( ) ( )
2 5

2

3

192
4 ,F

 
  


= −

     
 (42) 

 
And 
 

( ) ( )
2 5

2

4

576
4 1 .F

 
  


= −      (43) 

 
The exact general solution in this case is given by  
 

( ) ( ) ( )
2 2

2 2 2

2,0

12 12
sec .J K h K

 
   

 
= +  +     (44) 

 
For ( ) tanf Arc =  the corresponding forced KdV equation is given by (23) as we have 

 

( )
( )

2 5

1 3
2

288
,

1
F

  


 

−
=

+
      (45) 

 

( )
( )

2 5

2 3
2

432
,

1
F

  


 
=

+
      (46) 

 

( )
( )

( )

42 5

3 3
2

296
,

1
F

 


 

+
=

+
      (47) 

 
And 
 

( )
( )

( )

2 42 5

4 3
2

2288
.

1
F

  


 

+
=

+
     (48) 

 
The exact general solution in this case is given by 
 

( ) ( ) ( )
2 2

2

2,0

12 12
tan sec tan ,J Arc K h Arc K

 
   

 
= +  +    (49)  
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We note that it is possible to construct as many exact solutions of the forced kdV equation 
knowing ( ).f   
 
For ( ) expf  =  the corresponding forced KdV equation is given by (23) as we have  

 

( )
2 5

1

144
exp 2 ,F

 
 


=       (50) 

 

( )
2 5

2

216
exp2 ,F

 
 



−
=       (51) 

 

( ) ( )
2 5

3

24
4exp exp 4exp3 ,F

 
   


= − −    (52) 

 
And 
 

( ) ( )
2 5

4

288
exp3 exp .F

 
  


= −      (53) 

 
The exact general solution in this case is given by 
 

( ) ( ) ( )
2 2

2

2,0

12 12
exp sec exp .J K h K

 
   

 
= +  +    (54) 

 
for ( ) coshf  =  the corresponding forced KdV equation is given by (23) as we have 

 

( )
2 5

1

144
cosh sinh ,F

 
  


=     (55) 

 

( )
2 5

2

216
cosh sinh ,F

 
  



−
=      (56) 

 

( ) ( )
2 5

2

3

192
sinh 3 4sinh ,F

 
  


= −     (57) 

 
And 
 

( ) ( )
2 5

2

4

288
sinh sinh 1 .F

 
  


= −     (58) 

 
The exact general solution in this case is given by  

 

( ) ( ) ( )
2 2

2

2,0

12 12
cosh sec cosh .J K h K

 
   

 
= +  +    (59) 
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SECOND SERIES OF SOLUTIONS: USE OF IB-SECONDARY FUNCTIONS 
In this section we propose to construct the solutions of (3). To do this we first start by solving this 
equation without a second member to get an idea of the general solution to equation (3) to 
construct. Thus, by looking for the solution to equation (4) in the form 
 

( ) ( ),0 ,naT  =       (60) 
 
where a and n are real numbers to be determined. Thus, the insertion of (50) into (4) lead us to 
the equation 
 

 ( ) ( )( )3 3 2 3

0 1,1 2 1,1 3,11 2 0.n n nan C an T a nT an n n T    + + +
 − + + + + + =    (61)  

 
Looking for the values of n for which certain terms in (61) group together gives us 0n =  et 2n = . 
For 0n = , we have a trivial solution. In the case where 2n = , equation (51) becomes 
 

 ( )3 2

0 3,1 3,12 4 2 12 0.a C J a aJ      − + + + =     (62) 

 
Equation (62) is verified if for 0a   , we have 3

0 4C  = +  and 212 / .a  = −  The solution to (4) 

under these conditions is given by 
 

( ) ( ) ( )
2 2

2

2,0

12 12
sec .T

 
   

 

− −
=      (63) 

 
Solution (63) serves as a guide to choose the general form of solution of equation (3) to construct. 
Thus, we propose to subsequently construct the solution to equation (3) in the form 
 

( ) ( )( )
2

2,0

12
,T f


  



−
=        (64) 

 
where ( )f  is an arbitrary function continuously differentiable in its domain of definition. The 

insertion of (64) in (3) obliges to evaluate its different terms. Thus, we have  
 

( )( )
2

3,1

24
,f T f

 


 

 −
=


      (65) 

 

( )
2 4

5,12

288
,f T f

  


 


=


      (66) 

 

( ) ( ) ( )
2 2

2 2

3,1 2,0 4,02

24
2 3 ,f T f f T f f T f

 

 

 −
   = − + 

   (67) 

 
And 
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( ) ( ) ( ) ( ) ( )
3 2

2 2

2,0 4,0 3,1 5,13

24
6 9 4 12 .f f T f f f T f f f T f f T f

 

 

 −
       = − + + − −
 

  (68) 

 
In expressions (65) to (68), f  , f   , f   denote respectively the first derivative of ( )f  with respect 

to  , the second derivative of ( )f  with respect to   and the third derivative of ( )f   with respect 

to  .The insertion of the terms (65) to (68) in the equation (3) allows us to have the external force 

under 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2;0 2 4,0 3 3,1 4 5,1 ,F F T f F T f F T f F T f    = + + +   (69) 

 
 where the functions ( ) , 1,...,4iF i =  are given by 

 

( )
2 5

1

144
,F f f

 



 =       (70) 

 

( )
2 5

2

216
,F f f

 




−
 =       (71) 

 

( ) ( )
2 5

3

3

24
4 4 ,F f f f

 



  = − +

    
 (72) 

 
And 
 

( ) ( )
2 5

3

4

288
.F f f

 



 = −       (73) 

 
The forced KdV equation in this case is corrected as follow 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3
3 3

3

1 2;0 2 4,0 3 3,1 4 5,1

4

.

C

F T f F T f F T f F T f

   
   

   

   

   
− + + +

   

= + + +

   (74) 

 
The choice of external force is very important, it must be adequate for the reaction to produce the 

expected effects. Thus, any solitary wave solution of the form ( ) ( ) ( )( )2

2,012 / ,T f    = −  
where ( )f   is a continuously differentiable function in its domain is always an exact solution to 

equation (23). Thus, we can generalize the exact solution of the forced KdV equation (23) as 
follows 
 

( ) ( )( ) ( )( )
2 2

2

2,0

12 12
sec ,T f K f K

 
   

 

− −
= +  +    (75) 
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where  is the dispersion coefficient of order 3,  the nonlinearity coefficient, K  an arbitrary 

constant and 
0x t  = − . It should be noted that we can go from solution (24) to solution (75) and 

vice versa by making the following matches i   , ( ) ( )f if   et K iK  . 

 
Some Exact Solutions and External Forces 
In this subsection, we propose some exact solutions as well as the forced KdV equations that they 
verify for ( ) expf  =  the corresponding forced KdV equation is given by (23) such that we have 

 

( )
2 5

1

144
exp 2 ,F

 
 


=

     
 (76) 

 

( )
2 5

2

216
exp2 ,F

 
 



−
=

     
 (77) 

 

( ) ( )
2 5

3

24
4exp exp 4exp3 ,F

 
   


= − +    (78) 

 
And 

 

( ) ( )
2 5

4

288
exp exp3 .F

 
  


= −      (79) 

 
The exact general solution in this case is given by 

 

( ) ( ) ( )
2 2

2

2,0

12 12
exp sec exp ,T K K

 
   

 

− −
= +  +    (80) 

 
For ( ) secf h =  the corresponding forced KdV equation is given by (23) such that we have  

 

( ) ( )
2 5

2 2

1

144
sec sinh 1 2sec ,F h h

 
   



−
= −    (81) 

 

( ) ( )
2 5

3 2

2

216
sec sinh 1 2sec ,F h h

 
   


= −     (82) 

 

( ) ( )
2 5

2 2 4 2

3

24
sec sinh 3 6sec 4sec sinh ,F h h h

 
     


= − − −   (83) 

 
And 

 

( ) ( )
2 5

3 4 2

4

288
sec sinh 1 sec sinh .F h h

 
    



−
= −

  
 (84) 

 
The exact general solution in this case is given by 
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( ) ( ) ( )
2 2

2

2,0

12 12
sec sec sec .T h K h K

 
   

 
= +  +     (85) 

 
For ( ) tanhf  =  the corresponding forced KdV equation is given by (23) such that we have 

 

( )
2 5

5

1

288
sec sinh ,F h

 
  



−
=      (86) 

 

( )
2 5

5

2

432
sec sinh ,F h

 
  


=      (87) 

 

( ) ( )
2 5

4 2

3

48
sec 3 2sec ,F h h

 
  


= +     (88) 

 
And 
 

( ) ( )
2 5

2 4

4

288
sec 1 sec .F h h

 
  


= −     (89) 

 
The exact general solution is given by 
 

( ) ( ) ( )
2 2

2

2,0

12 12
tanh sec tanh .T K K

 
   

 
= +  +     (90) 

 
For ( ) 2f  =  the corresponding forced KdV equation is given by (23) such that we have 

 

( )
2 5

1

576
,F

 
 


=        (91) 

 

( )
2 5

2

864
,F

 
 



−
=       (92) 

 

( ) ( )
2 5

2

3

192
4 ,F

 
  


= +       (93) 

 
And 
 

( ) ( )
2 5

3

4

576
4 .F

 
  


= −       (94) 

 
The exact general solution is given by 
 

( ) ( ) ( )
2 2

2 2 2

2,0

12 12
sec .T K K

 
   

 
= +  +     (95) 
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For ( ) tanf Arc =  the corresponding forced KdV equation is given by (23) such that we have 

 

( )
( )

2 5

1 3
2

288
,

1
F

  


 

−
=

+
      (96) 

 

( )
( )

2 5

2 3
2

432
,

1
F

  


 
=

+      
 (97) 

 

( )
( )

( )

4 22 5

3 3
2

4 6 1024
,

1
F

  


 

+ +
=

+
     (98) 

 
and 

( )
( )

( )

2 42 5

4 3
2

2288
.

1
F

  


 

+
=

+
     (99) 

 
The exact general solution in this case is given by 
 

( ) ( ) ( )
2 2

2

2,0

12 12
tan sec tan ,J Arc K h Arc K

 
   

 
= +  +     (100) 

 
For ( ) cosf h =  the corresponding forced KdV equation is given by (23) such that we have  

 

( )
2 5

1

144
cosh sinh ,F

 
  


=      (101) 

 

( )
2 5

2

216
cosh sinh ,F

 
  



−
=      (102) 

 

( ) ( )
2 5

2

3

24
sinh 3 4sinh ,F

 
  


= +     (103) 

 
And 
 

( ) ( )
2 5

2

4

288
sinh 1 sinh .F

 
  


= −     (104) 

 
The exact general solution in this case is given by 

 

( ) ( ) ( )
2 2

2

2,0

12 12
cos sec cosh .T h K K

 
   

 
= +  +    (105) 

 
For ( ) cosf  =  the corresponding forced kdV equation is given by (23) such that we have 
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( )
2 5

1

144
cos sin ,F

 
  


=

 
     (106) 

 

( )
2 5

2

216
cos sin ,F

 
  



−
=      (107) 

 

( ) ( )
2 5

2

3

24
5sin 4sin ,F

 
  


= − +     (108) 

 
And 
 

( ) ( )
2 5

3

4

288
sin sin .F

 
  


= − +      (109) 

 
The exact general solution in this case is given by 

 

( ) ( ) ( )
2 2

2

2,0

12 12
cos sec cos .T K K

 
   

 
= +  +     (110) 

 
ANALYSIS OF SOLUTIONS PROFILES AND EXTERNAL EXCITATIONS: CASE OF THE FIRST 

SERIES OF SOLUTIONS 

 
Figure 1 : Curves representing the solution ( ) ( ) ( )( )2

2,0 0, 12 /x t J f x t    = −  for 0.1 = , 
0.1 = , 0.1 =  and 

0 0.1 =  : the left curve is obtained for ( ) ( )0 cos 0.1 0.f x t x t − = −  and the 

right curve for ( ) ( )0 cosh 0.1 0.1f x t x t − = − such that we have  10,10x − ,  0,40t . 
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Figure 2 : curves representing the solution ( ) ( ) ( )( )2

2,0 0, 12 /x t J f x t    = −  for 0.1 = , 
0.1 = , 0.1 =  and

0 0.1 =  : the left curve is obtained for ( ) ( )0 sin 0.1 0.f x t x t − = −  and the 

right curve for ( ) ( )0 sinh 0.1 0.1f x t x t − = −  suvh that we have  10,10x − ,  0,40t . 

 

 
Figure 3 : Curves representing the solution ( ) ( ) ( )( )2

2,0 0, 12 /x t J f x t    = −  for 0.1 = , 
0.1 = , 0.1 =  and 

0 0.1 =  : the left curve is obtained for ( ) ( )0 sec 0.1 0.f x t x t − = −  and the 

right curve for ( ) ( )0 sech 0.1 0.1f x t x t − = −  such that we have  10,10x − ,  0,40t . 

 

 
Figure 4 : Curves representing the solution ( ) ( ) ( )( )2

2,0 0, 12 /x t J f x t    = − for 0.1 = , 
0.1 = , 0.1 =  and 

0 0.1 =  : the left curve is obtained for ( ) ( )0 tan 0.1 0.f x t x t − = −  and the 

right curve for ( ) ( )0 tanh 0.1 0.1f x t x t − = −  such that we have  10,10x − ,  0,40t . 

 

 
Figure 5 : Curves representing the solution ( ) ( ) ( )( )2

2,0 0, 12 /x t J f x t    = −  for 0.1 = , 0.1 =

, 0.1 =  and 
0 0.1 =  : the left curve is obtained for ( ) ( )

2

0 0.1 0.f x t x t − = −  and the right for 

( ) ( )0 arctan 0.1 0.1f x t x t − = −  such that we have  10,10x − ,  0,40t . 
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ANALYSIS OF SOLUTIONS PROFILES AND EXTERNAL EXCITATIONS: CASE OF THE 
SECOND SERIES OF SOLUTIONS 

 
Figure 6 : Curves representing the solution ( ) ( ) ( )( )2

2,0 0, 12 /x t T f x t    = − −  For 0.1 = − , 
0.1 = , 0.1 =  and 

0 0.1 =  : the left curve is obtained for ( ) ( )0 cos 0.1 0.f x t x t − = −  and the 

right curve for ( ) ( )0 cosh 0.1 0.1f x t x t − = −  such that we have  10,10x − ,  0,40t . 

 

 
Figure 7 : Curve representing the solution ( ) ( ) ( )( )2

2,0 0, 12 /x t T f x t    = − −  for 0.1 = − , 
0.1 = , 0.1 =  and 

0 0.1 =  : the left curve is obtained for ( ) ( )0 sin 0.1 0.f x t x t − = −  and the 

right curve for ( ) ( )0 sinh 0.1 0.1f x t x t − = −  such that we have  10,10x − ,  0,40t . 

 

 
Figure 8 : Currves representing the solution ( ) ( ) ( )( )2

2,0 0, 12 /x t T f x t    = − −  for 0.1 = − , 
0.1 = , 0.1 = and 

0 0.1 =  : the left curve is obteined for ( ) ( )0 sec 0.1 0.f x t x t − = −  and the 

right curve for ( ) ( )0 sech 0.1 0.1f x t x t − = −  such that we have  10,10x − ,  0,40t . 
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Figure 9 : Curves representing the solution ( ) ( ) ( )( )2

2,0 0, 12 /x t T f x t    = − −  pour 0.1 = − , 
0.1 = , 0.1 =  et 

0 0.1 =  : la courbe de gauche est obtenue pour ( ) ( )0 tan 0.1 0.f x t x t − = −  et 

la courbe de droite pour ( ) ( )0 tanh 0.1 0.1f x t x t − = −  such that we have  10,10x − ,  0,40t . 

 

 
Figure 10 : Curves representing the solution ( ) ( ) ( )( )2

2,0 0, 12 /x t T f x t    = − −  for 0.1 = − , 

0.1 = , 0.1 =  and 
0 0.1 =  : the left curve is obtained for ( ) ( )

2

0 0.1 0.f x t x t − = −  and the right 

curve for ( ) ( )0 arctan 0.1 0.1f x t x t − = −  tel que  10,10x − ,  0,40t . 

 
Beyond the curves obtained above, we see that it is possible to obtain as many curves as long as 
the function f(x) is continuously differentiable in its domain of definition. For example, for f(x) =, 
we have following curves. But except that not all the curves obtained can properly describe the 
giant waves as obtained on the sea surface during tsunamis. 
 

 
Figure 11 : Curves representing respectively the solution ( ) ( ) ( )( )2

2,0 0, 12 /x t J f x t    = −  

and ( ) ( )2

2,0 0, 12 /x t T x t    = − − for , 0.1 = , 0.1 =  and 
0 0.1 =  : the left curve is obtained 
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for ( ) ( )
2

0 10 0.1 0. , 0.1f x t x t  − =  − − =  and the right curve for

( ) ( )
2

0 10 0.1 0. , 0.1f x t x t  − =  − − = −  , such that we have  10,10x − ,  0,40t . 

 
CONCLUSION 

To write this article, we started from the observation that the forced KdV equation which 
attempts to explain the sliding movements of the seabed, the triggering and the deployment of 
tsunamis had until now only approximate solutions. This is undoubtedly due to the fact that the 
second member of the equation which is considered as an external excitation or an external force 
is chosen randomly. Motivated by this fact, we wanted to demonstrate in this article how to 
choose the external force of the KdV equation in order to obtain exact solutions. The objective is 
to obtain solutions whose profiles best approximate the giant waves often observed during 
tsunamis. To achieve our objective, we first solved the KdV equation which characterizes the free 
movement of solitary waves, i.e. the basic KdV equation without a second member. Once its 
solutions were obtained, we constructed the general solutions of the KdV equation, while 
ensuring that the ansatz-solution to be constructed is close to that of the family of solitary waves. 
The solution of the nonlinear differential equation without a second member of KdV admitting 

for solutions ( ) ( ) ( )2

2,012 / ,J    = −  and ( ) ( ) ( )2

2,012 / T    = −  where 
0x t  = −  , we take 

inspiration from this to construct solution to (1) under the form ( ) ( ) ( )( )2

2,012 / ,J f    = −  and 

secondly in the form ( ) ( ) ( )( )2

2,012 / ,T f    = −  where ( )f  is an arbitrary function 

continuously differentiable in its domain of definition. We have established in our approach the 
general expression of the external force so that we have exact solutions capable of characterizing 
the giant wave resulting from the tsunami surge. This approach allows to build an infinity of 
solutions; but in this article, we have proposed just a few sample solutions, each time making an 
adequate choice of the function ( )f  . We have considered two sets of solutions in this 

manuscript, but it should be noted that in practice it is advisable to consider a single case to search 
for solutions and subsequently move on to other forms of solutions through transformations. 
 

( ) ( ) ( ) 2

, , , 1
m

n m n mJ i i T i = = −  or ( ) ( ) ( ) 2

, , , 1
m

n m n mT i i J i = = − . 

 
Figures 1 to 11 show some profiles of giant wave solutions resulting from the results obtained. We 
humbly believe that this approach to solving and analyzing the forced KdV equation can be a 
significant contribution to the understanding of tsunami dynamics in case numerical and 
experimental propagation studies confirm the so-called exact analytical solutions. 
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