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Abstract: 
A new approach to the exact solution for decay of grid-produced turbulence in the final 
period has been proposed. The governing equations are the two-point and three-point 
velocity correlation equations in which the quartic correlations are neglected as the 
closure assumption, and the pressure-velocity correlations are neglected tentatively. 
Without recourse to the isotropic conditions, these equations are found to be 
separable into a pair of Oseen (type) equations. As a result, the double- and triple-
correlations are solved analytically as an initial value problem. The effect of the triple 
correlation adds a correction term proportional to x-4 to the well-known decay law x-5/2 
for the turbulent energy in the final period: <(∆u)2>=Ax-5/2+ Bx-4, where <(∆u)2> is the 
turbulent energy, A and B are constants determined by the initial conditions, and x is 
the streamwise coordinate. 

 

 
PART: 1 

INTRODUCTION 
“Turbulence” has been one of the most mysterious problems to scientists for several centuries. 
The nature of grid produced-turbulence has been an unsettled problem for almost one century. 
Partly for practical requirements (wind tunnel design) and partly for its theoretical tractability 
(homogeneous and isotropic turbulence) the research has been concentrated on grid-produced 
turbulence. However, it is impossible to over-emphasize the fact that mainly because of the 
nonlinearity of the Navier-Stokes equation, no-one has ever solved any problem about turbulence 
theoretically in concrete situations. Tsugé [3] has proposed to use the sequence of separated 
points velocity correlation equation, viz. the two-point velocity correlation equation, the three-
point velocity correlation equation, and so on rather than conventional velocity correlation 
equation, say one-point velocity correlation equation [1,2]. Though Tsugé [3] has derived the two-
point counterpart of the Navier-Stokes equation based on Klimontovich [4] formalism, those 
equations can be formally derived by using the Navier-Stokes equation: It should be noted that 
the formal derivation of his correlation equation is similar to Hinze’s [5] two-point velocity 
correlation equation, which has been thought of a “entirely intractable” dueto the six-dimensional 
nature under general three-dimensional flow situations. Tsugé [3], however, has shown that these 
types of correlation equations [3, 5] are separable into a pair of Orr-Sommerfeld type equations 
at the respective points. In the present paper, it will be shown how the double correlations can be 
solved analytically with the aim of analyzing the unexplained phenomena of fully developed grid-
produced turbulence. Using the experimental initial values in preference to the Loitsyanskii 
invariant [6], the double correlations will be solved analytically.  

 
THE CORRELATION EQUATIONS 

The two-point and the three-point velocity correlation equations will be formally derived for the 
general case of inhomogeneous and anisotropic turbulence.  
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The two-point velocity correlation equation has the form 
 

<∆ui(a)NS[u
0

(b), p
0

(b)]ｌ＋∆uｌ(ｂ)NS[u
0

(a), p
0

(a)]i>=0    (2.1) 
 

with the following definition 
 

NS (u, p)≡ (𝜕/𝜕𝑡 +uj∙ 𝜕/𝜕xj−𝜐∇2) ui+1/𝜌 ∙ 𝜕p/𝜕xi    (2.2) 
 
where bracket <> denotes an ensemble average, arguments (a) and (b) mean point A and point B, 

respectively, z
0

 stands for instantaneous fluid dynamic quantity, z is its ensemble average, ∆z is 
the fluctuation given by 
 

 ∆z=z
0

 − z,       (2.3) 
 
and ui Eulerian velocity, t time, xj Eulerian Cartessian coordinates, 𝜌 density, p static pressure, ∇2 
Laplacian operator, and υ kinematic viscosity. It may be worth noting here that Eq. (2.1) is similar 
to Hinze’s two-point velocity correlation equation. The solenoidal conditions of the two-point 
velocity correlations are 
 

𝜕R (,1)
 Ⅰ, l (a, b)/𝜕xi = 𝜕R (,1)

 Ⅰ, l (a, b)/𝜕xl =0,    (2.4) 
 

Where, 
 

R(,1)
Ⅰ,l (a, b) =<∆ui(a)∆ul(b)> 

 
is the two-point double velocity correlation. 
 

THE APPLICATION TO GRID-PRODUCED TURBULENCE 
As a matter of course, the turbulence produced by the grid mesh is not what is called isotropic. 
The former has a definite spatial directivity, viz. the direction of the main flow 
 

u = (U
-

, 0,0),       （3.1） 
 

while the latter has not, where U
-

 is the constant main flow velocity. Now it will be shown that the 
present method enables the solution for the double and triple correlations to be obtained without 
introducing the isotropic condition. 
 
In the case of the present flow field, i.e., condition (3.1), eq (2.1) and (2.5) become, respectively, 
 

{U
-

[𝜕/𝜕x1(a)+ 𝜕/𝜕x1(b)]−𝜐[∇2(a)+ ∇2(b)]} Rij
(1,1) (a, b) 

=−𝜕Rijr
(1,1,1) (a, b, a)/𝜕xr(a)−𝜕Rijr

(1,1,1)(a, b, b)/𝜕xr(b),       (3.2) 
 

{U
-

[𝜕/𝜕x1(a)+ 𝜕/𝜕x1(b)+ 𝜕/𝜕x1(c)]−𝜐[∇2(a)+ ∇2(b)+ ∇2(c)]} Rijr
(1,1,1)(a, b, c)=0,  (3.3) 

 
where the time derivative terms have been neglected because a time-dependent solution for 
fluctuation is not to be expected under the steady primary flow, and where the pressure-velocity 
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correlations are also neglected; The pressure-velocity correlations were shown by Batcheor [7] to 
be identically zero for the case of homogeneous turbulence. For later convenience, the non-
dimensional length x, double correlations Rij, and triple correlations Rijr are introduced by the 
following re-definition, 
 

X=x/M,       (3.4) 
 

Rij=Rij/U
-

2,       (3.5) 
 

Rijr= Rijr/U
-

3,       (3.6) 
 
and the Reynolds umber is defined as follows, 
 

R=MU
-

/υ,       (3.7) 
 
where M is the mesh size of the grid. Then, the non-dimensional versions of eq s (3.2) and (3.3) ae 
simply obtainable by replacing in these equations, 
 

U
-

=1, υ=R-1.       (3.8) 
 
Therefore, the two equations become, respectively, 
 

[𝜕/𝜕x1(a)+ 𝜕/𝜕x1(b)]−1/𝑅 ∙[∇2(a)+ ∇2(b)]} Rij(1,1) (a, b)=−𝜕Rijr
 (1,1,1) (a, b, a)/𝜕xr(a)−𝜕Rijr

(1,1,1) (a, b, 
b)/𝜕xr(b),    (3.9) 

 
 [𝜕/𝜕x1(a)+ 𝜕/𝜕x1(b)+ 𝜕/𝜕x1(c)]−1/𝑅 ∙[∇2(a)+ ∇2(b)+ ∇2(c)]} Rijr

(1,1,1) (a, b, c)=0,  (3.10) 
 

It is obvious that eq (3.10) is solvable by the method of variable disparation, viz. 
 

Rijr
(1,1,1)(a, b, c)=𝜑i(𝑎)𝜑j(b)𝜑r(c),     (3.11) 

 
and 𝜑s follows the following equation 
 

(𝜕/𝜕x1−R-1∇2−i𝜆)𝜑s=0,      (3.12) 
 
where iλ is the separation constant such that the general solution is expressible in the form 
 

Rijr
(1,1,1)(a, b, c) = ∫ 𝜑i(a) 𝜑j(b)𝜑r(c)𝛿[λ(a)+ λ(b)+λ(c)]dλ(a) λ(b) λ(c),   (3.13) 

 
where 𝛿 is the Dirac delta function. 
 
It is easily seen that eq (3.12) corresponds to the special case of the Oseen equation for waves 
travelling in a uniform flow with frequency λ. Such waves decay due to viscous effects and 
dispersion. This fact immediately suggests that a solution of the following form is sought, 

 

𝜑s=∫ 𝐴s(k, 𝛽, λ)exp(−𝛽x1+ikixi)dk2dk3, (𝛽 −ik1)2+R(𝛽 −ik1)+iλR−k2
2−k3

2=0,  (3.15) 
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which assures that 𝜑s is the solution of eq (3.12). After eq (3.15) is decomposed into the real and 
the imaginary parts, respectively, 𝛽 and 𝜆 become as the first approximation, 
 

𝛽 ≅k2/R,       (3.16) 
 

λ≡k1,        (3.17) 
 
where k2=k1

2+ k2
2 + k3

2. If the expression like eq (3.14) for points a, b, and c, respectively, are 
substituted into eq (3.13), we obtain the general solution for the triple correlations. 
 

Rijr
(1,1,1) (a, b, c) =∫ 𝐶ijrexp{-1/R[k2(a)x1(a)+k2(b)x1(b)+k2(c)x1(c)]+i[ki(a)xi(a)+ 

ki(b)xi(b)+ ki(c)xi(c) i(a)]} 𝛿[k(a)+ k(b)+ ki(c)]dk(a) k(b) k(c),    (3.18) 
 
where we put Cijr=Ai Aj Ar, and we use the relations (3.16) and (317). Furthermore, we use the 
condition that the triple correlations are homogeneous in planes parallel with the grid. Once we 
can determine the Cijr from the initial conditions, we will be able to solve Rij

(1,1) (a, b) in eq (3.9) 
formally, 
 

 Rij
(1,1) (a, b)= [Rij

(1,1)(a, b)]c+ [Rij
(1,1)(a, b)]p ,     (3.19) 

 
Where [Rij

(1,1) (a, b)]c and [Rij
(1,1)(a, b)]p are the complementary and the particular solutions, 

respectively. 
 

THE SOLUTION N THE FINAL PERIOD OF DECAY 
As is well known, the complementary solution is such a solution that can be obtained by putting 
the right-hand side of eq (3.9) to zero, viz.  
 

 [𝜕/𝜕x1(a)+ 𝜕/𝜕x1(b)]−1/𝑅 ∙[∇2(a)+ ∇2(b)]} [Rij
(1,1) (a, b)]c=0 .   (4.1) 

 
Similarly to the solution for Rijr

(1,1,1) (a, b, c) in eq (3.10), the complementary solution is solvable by 
the method of variable-separation in the following manner. The solution is expressible as follows, 
 

[Rij
(1,1) (a, b)]c=∫ 𝜑i(a)𝜑j(b)𝛿[λ(a)+ λ(b)] d λ (a) λ(b).    (4.2) 

 
Moreover, 𝜑s has a similar form 𝜑s, i.e. 
 

𝜑s=∫ 𝐴s(k, 𝛽, λ)exp(−𝛽x1+ikixi)dk2dk3,     (4.3) 
 
where 𝛽 ad λ satisfy the same dispersion relation as eq (3.15). Hence, substituting the expression 
like eq (4.3) for points a and b into eq (4.2), we obtain the complementary solution, 
 

[Rij
(1,1)(a, b)]c= ∫ 𝐶ijexp{−1/𝑅 ∙[k2(a)x1(a)+ 

k2(b)x1(b)] + i[ki(a)xi(a)+ki(b)xi(b)]}𝛿[k(a)+k(b)]dk(a)dk(b),   (4.4) 
 
where we put Cij=Ai Aj, and we use the relations (3.16) and (3.17) as well as the condition that the 
double correlations are homogeneous in the planes parallel with the grid. 
 
For later convenience, we will rewrite eq. (4.4) as follows 
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[Rij
(1,1) (a, b)]c=∫ 𝐶ijexp[−2k2/R(x−x0)+iki ri]dk,    (4.5)  

     
where x – x0=[x1(a)+x1(b)], r =x(a) – x(b), and x0 is a position behind the grid, where the longitudinal 
double velocity correlation has a Gaussian distribution: This fact is supported by many 
experiments, viz. Batchelor-Townsend (1948) (see Fig.3), Stewart (1951), and Van Atta Chen 
(1969). Using the longitudinal double velocity correlation measure by Batchelor-Townsend (1948) 
as an initial condition, the unknown constant Cij can be determined as follows. Substituting the 
double velocity correlations at the point x=x0 in eq. (4.5), we get  
 

(f−g) rirj/r2 + g𝛿ij=∫ 𝐶ij∙exp(ikiri)dk.      (4.6) 
 

Moreover, operating  
 

1/(2𝜋)3∫ 𝑒𝑥𝑝(-ik′i∙ 𝑟i)dr 
 
to the both sides of eq. (4.6), we obtain 
 

1/(2𝜋)3∫[(f−g) rirj/r2 + g𝛿ij] exp(-ik′i∙ 𝑟i)dr=Cij,    (4.7) 
 
where we use the definition of delta function, that is 
 

1/(2𝜋)3∫ 𝑒𝑥𝑝ir∙(k−k’) drdk=∫ 𝛿[k−k’]∙Cij∙dk=Cij 
 
Before, we integrate the l.h.s. of eq. (4.7), we must notice the following facts. In order to integrate 
the l.h.s., we must use such a polar coordinate that the direction of k’ coincides with Z-axis; the 
direction of k’ always coincides with that of r*

3(=Z*). Therefore, the direction of X* is generally 
different from the stream-wise coordinate X (Figure 1).  
 

 
Figure 1: Definition sketch of coordinates. 
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Whereas we usually adopt the coordinate X as a reference axis in determining the double velocity 
correlations. In order to unify these two coordinate systems. We introduce next notation.  
 

ri=il
^

r*
l,        (4.8) 

 

where il
^

 is direction cosine between the two coordinate systems. For example, we will calculate 
the following term. 
 

1/ (2𝜋)3∫(r1r1/r2) (f−g)∙exp(-iki∙ 𝑟i) dr 
 

=1/ (2𝜋)3∫(1l
^

1m
^

r*
lr*

m/r2) (f−g)∙exp(-iki∙ 𝑟i) dr, 
 

=1/(2𝜋)3∫(11
^

11
^

r*
1

2+12
^

12
^

r*
2

2+13
^

13
^

r*
3

2 )/r2∙(f−g)∙exp(-iki∙ 𝑟i)dr, 
 

=1/(2𝜋)3∫(11
^

11
^

r*
1

2+12
^

12
^

r*
2

2+13
^

13
^

r*
1

2 −13
^

13
^

r*
1

2+13
^

13
^

r*
3

2 )/r2∙(f−g)∙exp(-iki∙ 𝑟i)dr, 
 

=1/(2𝜋)3∫[(11
^

11
^

r*
1

2+12
^

12
^

r*
2

2+13
^

13
^

r*
1

2)+ 13
^

13
^

 (r*
3

2 −r*
1

2 )]/r2∙(f−g)∙exp(-iki∙ 𝑟i)dr, 
 

=1/(2𝜋)3∫[(11
^

11
^

r*
1

2+12
^

12
^

r*
1

2+13
^

13
^

r*
1

2)+ 13
^

13
^

 (r*
3

2 −r*
1

2 )]/r2∙(f−g)∙exp(-iki∙ 𝑟i)dr, 
 

=1/(2𝜋)3∫[1i
^

1i
^

r*
1

2+ 13
^

13
^

 (r*
3

2 −r*
1

2 )]/r2∙(f−g)∙exp(-iki∙ 𝑟i)dr, 
 

=1/(2𝜋)3∫[1i
^

1i
^

r*
1

2+ 13
^

13
^

 (r*
3

2 −r*
1

2 )]/r*2∙(f−g)∙exp(-ikr*)dr*,   (4-9) 
 
where we use the relations, 
 

k’=k, 
 

1/ (2𝜋)3∫(11
^

12
^

r1
*r2

*) (f−g)∙exp(-iki∙ 𝑟i) dr=0, ………, 
 

1/ (2𝜋)3∫(r*
1

2/r2) (f−g)∙exp(-iki∙ 𝑟i) dr=1/ (2𝜋)3∫(r*
2

2/r2) (f−g)∙exp(-iki∙ 𝑟i) dr. 
 
At this stage, we introduce Batchelor-Townsend (1948)’s longitudinal double velocity correlation, 
 

f=exp[-r*２/(a2M2)],       (4-10) 
 
where a is a constant, to be determined by the experiment. The normalized version of eq. (4.10) 
becomes  
 

f=exp(-r*２/a2),       (4-11) 
 

where we use r* → Mr* for the normalization. 
 
Furthermore, using the functional form f and the continuity relation of the double correlation,  
 

g=f+r*/2∙ 𝜕𝑓/𝜕r*, 
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we have 
 

g=(1−r*2/a2) exp(-r*2/a2),      (4-12) 
 

where g is the transverse double correlation. Hence, the following term in eq. (4.9) becomes 
 

∫ 𝑟1
*2/r*2(f−g) exp(-ikr*) dr*, =𝜋 ∫ 𝑟

∞

0
*2[r*2/a2∙exp(-r*2/a2) [4sinkr*/(k3r*3)−4coskr*/(k2r*2)] dr*, 

=𝜋3/2/2∙a3exp(-a2k2/4).   (4-13) 
 
Similarly, to the above, 
 

∫ 𝑟3
*2/r*2(f−g) exp(-ikr*) dr*, =𝜋 ∫ 𝑟

∞

0
*2[r*2/a2∙exp(-r*2/a2) [4sinkr*/(kr*)+4coskr*/ 

(k2r*2)−,4coskr*/(k3r*3)] dr*, = 𝜋3/2/2∙a3exp(-a2k2/4)− 𝜋3/2/4∙a5k2exp(-a2k2/4).  (4-14) 
 
Substituting eq. (4-13) and (4-14) in eq. (4.9), we get  
 

1/(2𝜋)3∫ 𝑟1r1/r*2(f−g) exp(-ikr*) dr*=a3/(16𝜋3/2)∙exp(-a2k2/4) (1−a2k1
2).  (4-15) 

 

In the same way, we can obtain the following relations, 
 

1/ (2𝜋)3 ∫ 𝑟1r2/r*2(f−g) exp(-ikr*)dr*=a3/(16𝜋3/2)∙exp(-a2k2/4)(−a2k1k2/2)  (4-16) 
 
And 
 

1/ (2𝜋)3 ∫ 𝑟iri/r*2(f−g) exp(-ikr*) dr*=a3/(16𝜋3/2)∙exp(-a2k2/4)(3 −a2k2/2).  (4-17) 
 

Therefore, from eq. (4-15), (4-16) and (4-17), we can get the general expression, viz. 
 

1/ (2𝜋)3 ∫ 𝑟irj/r*2(f−g) exp(-ikr*)dr*= A(𝛿ij−a2kikj/2),    (4-18) 
 
Where, 
 

A=a3/(16𝜋3/2)∙exp(-a2k2/4). 
 

Similarly, to the above, the term in eq. (4.7) becomes 
 

𝛿ij/(2𝜋)3∫ 𝑔 ∙exp(-ikr*) dr*= 𝛿ij / (2𝜋)3 ∫(1−r*2/a2) exp (-r*2/a2)∙ exp(−ikr ∗)d𝐫 ∗ =−A𝛿ij + 
A/2∙k2a2𝛿ij.     (4-19) 

 
Substituting eq. (4-18) and (4.19) in eq. (4-7), we finally have 
 

Cij=Aa2k2/2∙(𝛿ij – kikj/k2).      (4-20) 
 
Then, substituting Cij in the above that are determined with the initial condition in eq. (4-5), we 
can obtain the turbulent energy decay law in the final period. Namely,  
 

[Rij
(1,1) (a, b)]c=𝜋1/2a5/32∫(k2𝛿ij−kikj) exp(-a2k2/4)∙exp[-2k2/R∙(x−x0)]+ikr*]dk.  (4-21) 
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By the definition of the turbulent energy, we put the subscripts i=j and r*=0 in eq. (4-21), the 
energy decay law becomes 
 

u
_

2
c =a5/(32𝜋3/2)∫(k2𝛿ij−kikj) exp(-a2k2/4)∙exp[-2k2/R∙(x−x0)]dk =3a2/32∙[a2/4 + 2/R∙(x-x0)]-5/2,  

(4-22) 
 

where u
_

2
c is turbulent energy in the final period of decay. It may be worth noting that x0 is the 

position where the longitudinal double velocity correlation possesses a Gaussian distribution. 
Now in Fig.2, it is clearly seen that turbulent energy in the final period decays according to x-5/2. 
Owing to this reason, assume that the Gaussian distribution is realized at the position, viz. 
x0 =Ra2/8. 
 
In this particular case, the energy decay law in the final period can be expressed by 
 

 u
_

2
c =3a2/32∙(R/2)5/2∙x-5/2.      (4.23) 

 
Let us change the variable x in eq (4.23) to the timer t by introducing the so-called Taylor’s 
hypothesis, t=x/U, the present decay law agrees with the existing theories in the final period of 
decay such as Loitsyyanskii [12], Batchelor [6], and Deissler [13]. However, Phillips [14] and 
Saffman [15] lead -3/2 power law in the final period theoretically. 
 
The present decay law is also in good agreement with Batchelor & Townsend’s by an experiment; 
both of these experiments show that turbulent energy decreases inversely as the square of decay 
time. Referring to eq (4.22), if the Reynolds number R is small compared with the distance (x−x0), 
the turbulent energy decays as (x−x0)-5/2. In fact, the previous experiments have been always 
performed under low Reynolds number, i.e., R ≤ 1000. Thus, it is necessary to establish the effect 
of Reynolds number by conducting experiments at high Reynolds number. Based upon eq (4.22), 
we can suggest in case of high Reynolds number the initial stage of grid-produced turbulence 
must persist over a greater distance than in the case of low Reynolds number. In contrast to the 
final period of decay (e.g. [8], [12]), most experimental turbulence energy decays as t-1 (or x-1) (e.g. 
[8],[13]). Therefore, the present theory conjectures that in the classical sense the initial period 
might be able to exist even more downstream of the grid under high Reynolds number.  
 
In fact, when 8/(a2R)∙(x−x0) ≪ 1, eq (4.22) can be expressed by  
 

u
_

2
c=3(2)1/2/a3[1−20/(a2R)∙(x−x0)].     (4.24) 

 
The above relation indicates that the turbulence energy decays as x-1 essentially. In other words, 
we may not need the triple correlations in order to obtain the turbulent energy decay law covering 
the whole region behind the grid. It may be useful to know that the turbulent energy decay law 
behind the gris is an initial value problem mathematically 
 

DISCUSSIONS 
In support of this proposition, Uberoi & Wallis [14] examined the effects of the grid geometry. 
Also, Ling & Wan [15] made an experimental study of weak turbulence created by a mechanically 
agitated grid, and found that turbulent energy decay law depends on the velocity ratio of agitator 
to the mean flow.  
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There are two significant limitations in the present theory. Firstly, the pressure-velocity 
correlations are neglected, and secondly the initial conditions for the triple correlations are not 
given due to the lack of the experimental data. The former assumption, i.e., the pressure-velocity 
correlations are zero, has been shown to be valid only for the case of homogeneous turbulence 
[7], while the present theory only enquires homogeneity in planes parallel with the grid. It should 
be here noted that the present theory treats much more general flow field than the classical one, 
e.g. [1],[2] and [7].  
 
Finally, the some works for including the pressure-velocity correlations into the present theory 
and for applying the present theory to oceanic turbulence have been conducted by Tsugé [16] and 
Nakagawa [17], respectively. For example, oceanic turbulence in the upper layers of the ocean, 
the turbulence is approximately homogeneous in horizontal planes [18], so that the present 
theory may be applicable easily. It is believed that the present theoretical approach to turbulence 
has great possibility in its applicability for various turbulence problems. 
 

CONCLUDING REMARKS 
Without using homogeneous and isotropic conditions, the double correlations are exactly solved 
as an initial value problem. The solution is expressed by 
 

u
_

2
c =3a2/32∙(R/2)5/2∙x-5/2, 

 
where a is a constant to be determined by the measurement of the double velocity correlation at 
the initial point behind the grid, R is the Reynolds number defined by UM/υ, U is the flow velocity 
in the upstream of the grid, M is the mesh size, υ is the kinematic viscosity of the fluid, and x is the 
distance from the grid in the downstream. It has been, however, assumed that the flow field 
behind the grid is homogeneous in the planes parallel with the grid together with the pressure-
velocity correlations have been neglected tentatively. 
 
In part 2, it will be challenged to solve the triple correlations in the same way as the double 
correlations. Such work has, therefore, been left for this part.  
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PART 2 
This paper is concerned with an exact solution of grid-produced turbulence in the transitional 
period of decay. This is part 2 of our previous paper entitled an exact solution of grid-produced 

turbulence: part 1, in which the turbulent intensity u
_

2 behind the grid is expressed as follows, 
 

u
_

2=3a2/32∙(R/2)5/2∙x-5/2, 
 
where a is a constant to be determined by the measurement of the double velocity correlation at 
the initial point behind the grid, R is the Reynolds number defined by UM/υ, U is the flow velocity 
in the upstream of the grid, M is the mesh size, υ is the kinematic viscosity of the fluid, and x is the 
distance from the grid taking positive in the downstream. That is, because the present part is an 
extension of the part1, both of the introduction are references are common, so the mathematical 
argument to derive the correction term will be started immediately. It is found that the inclusion 
of the triple velocity correlations adds a correct term ~x-4 to the forgoing solution ~x-52. The 
comparison of the theory and experiment has revealed that the agreement is satisfactory, and 
the correction term contributes to improve the degree of the agreement significantly.  
 
THEORETICAL ANALYSES FOR THE GRID-PRODUCED TURBULEN IN THE TRANSITIONAL 

PERIOD OF DECAY 
The two-point and the three-point velocity correlation equations will be formally derived for the 
general case of inhomogeneous and anisotropic turbulence (Tsugé 1974). The two-point velocity 
correlation equation has the form 
 

<∆ui(a)NS[u
0

(b), p
0

(b)]ｌ＋∆uｌ(ｂ)NS[u
0

(a), p
0

(a)]i>=0    (1) 
 

with the following definition 
 

NS (u, p)≡ (𝜕/𝜕𝑡 +uj∙ 𝜕/𝜕xj−𝜐∇2) ui+1/𝜌 ∙ 𝜕p/𝜕xi,    (2) 
 
where bracket <> denotes an ensemble average, arguments (a) and (b) mean point A and point B, 

respectively, z
0

 stands for instantaneous fluid dynamic quantity, z is its ensemble average, ∆z is 
the fluctuation given by 
 

 ∆z=z
0

 − z,        (3) 
 
and ui Eulerian velocity, t time, xj Eulerian Cartessian coordinates, 𝜌 density, p static pressure, ∇2 
Laplacian operator, and υ kinematic viscosity. It may be worth noting here that (1) is similar to 
Hinze’s two-point velocity correlation equation. The solenoidal conditions of the two-point 
velocity correlation are 
 

𝜕R (,1)
 Ⅰ,l (a, b) /𝜕xi = 𝜕R(,1)

Ⅰ,l (a, b) /𝜕xl =0,    (4) 
 
Where,  
 

R (,1)
Ⅰ,l (a, b)=<∆ui(a)∆ul(b)> 

 
is the two-point double velocity correlation. 
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THE APPLICATION TO GRID-PRODUCED TURBULENCE 
As a matter of course, the turbulence produced by the grid mesh is not what is called isotropic. 
The former has a definite spatial directivity, viz. the direction of the main flow 
 

u = (U
-

, 0,0),       (5) 
 

while the latter has not, where U
-

 is the constant main flow velocity. Now it will be shown that the 
present method enables the solution for the double and triple correlations to be obtained without 
introducing the isotropic condition. 
 
In the case of the present flow field, i.e., condition (5), eq (1) and (2) become, respectively, 
 

{U
-

[𝜕/𝜕x1(a)+ 𝜕/𝜕x1(b)]−𝜐[∇2(a)+ ∇2(b)]} Rij
(1,1)(a, b)= 

 
=−𝜕Rijr

(1,1,1) (a, b, a)/𝜕xr(a)−𝜕Rijr
(1,1,1)(a, b, b)/𝜕xr(b),    (6) 

 

{U
-

[𝜕/𝜕x1(a)+ 𝜕/𝜕x1(b)+ 𝜕/𝜕x1(c)]−𝜐[∇2(a)+ ∇2(b)+ ∇2(c)]} Rijr
(1,1,1)(a, b, c)=0,   (7) 

 
where the time derivative terms have been neglected because a time-dependent solution for 
fluctuation is not to be expected under the steady primary flow, and where the pressure-velocity 
correlations are also neglected; The pressure-velocity correlations were shown by Batcheor [7] to 
be identically zero for the case of homogeneous turbulence. For later convenience, the non-
dimensional length x, double correlations Rij, and triple correlations Rijr are introduced by the 
following re-definition, 
 

X=x/M,        (8) 
 

Rij=Rij/U
-

2,        (9) 
 

Rijr= Rijr/U
-

3,        (10) 
 
and the Reynolds umber is defined as follows, 
 

R=MU
-

/υ,        (11) 
 
where M is the mesh size of the grid. Then, the non-dimensional versions of (1) and (2) are simply 
obtainable by replacing in these equations, 
 

U
-

=1, υ=R-1.        (12) 
 
Therefore, the normalized two equations become, respectively, 
 

[𝜕/𝜕x1(a)+ 𝜕/𝜕x1(b)]−1/𝑅 ∙[∇2(a)+ ∇2(b)]} Rij
(1,1) (a, b)= 

 
=−𝜕Rijr

(1,1,1) (a, b, a)/𝜕xr(a)−𝜕Rijr
(1,1,1)(a, b, b)/𝜕xr(b),    (13) 
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 [𝜕/𝜕x1(a)+ 𝜕/𝜕x1(b)+ 𝜕/𝜕x1(c)]−1/𝑅 ∙[∇2(a)+ ∇2(b)+ ∇2(c)]} Rijr
(1,1,1)(a, b, c)=0,  (14) 

 
It may be obvious that (11) is solvable by the method of variable separation, viz. 

 
Rijr

(1,1,1)(a, b, c)=𝜑i(𝑎)𝜑j(b)𝜑r(c),     (15) 
 
and 𝜑s follows the following equation 
 

(𝜕/𝜕x1−R-1∇2−i𝜆)𝜑s=0,      (16) 
 
where iλ is the separation constant such that the general solution is expressible in the form 
 

Rijr
(1,1,1)(a, b, c) = ∫ 𝜑i(a) 𝜑j(b)𝜑r(c)𝛿[λ(a)+ λ(b)+λ(c)]dλ(a) λ(b) λ(c),   (17) 

 
where 𝛿 is the Dirac delta function. 
 
It is easily seen that (16) is nothing more than a special case of the Oseen equation for waves 
travelling in a uniform flow with frequency λ. Such waves decay due to viscous effects and 
dispersion. This fact immediately suggests that a solution of the following form is sought, 

 

𝜑s=∫ 𝐴s(k, 𝛽, λ)exp(−𝛽x1+ikixi)dk2dk3,  (18) 
 

(𝛽 −ik1)2+R (𝛽 −ik1) +iλR−k2
2−k3

2=0,      (19) 
 
which assures that 𝜑s is the solution of (16). After (19) is decomposed into the real and the 
imaginary parts, respectively, 𝛽 and 𝜆 become as the first approximation, 
 

𝛽 ≅k2/R,        (20) 
 

λ≡k1,         (21) 
 
where k2=k1

2+ k2
2 + k3

2. If the expression like (18) for points a, b, and c, respectively, are substituted 
into (17), we obtain the general solution for the triple correlations. 
 

Rijr
(1,1,1)(a, b, c) =∫ 𝐶ijrexp{-1/R[k2(a)x1(a)+k2(b)x1(b)+k2(c)x1(c)]+i[ki(a)xi(a)+ 

ki(b)xi(b)+ ki(c)xi(c) i(a)]} 𝛿[k(a)+ k(b)+ ki(c)]dk(a) k(b) k(c),     (22) 
 
where we put Cijr=Ai Aj Ar, and we use the relations (20) and (21). Furthermore, we use the  

                                    
 Rij

(1,1) (a, b)= [Rij
(1,1)(a, b)]c+ [Rij

(1,1)(a, b)]p ,    (23) 
 
where [Rij

(1,1) (a, b)]c and [Rij
(1,1)(a, b)]p are the complementary and the particular solutions, 

respectively. 
 

THE SOLUTION IN THE TRANSITIONAL PERIOD OF DECAY 
As we have already derived the complementary solution in (13) in the part 1, it is sufficient to solve 
the particular solution to obtain the one in the transitional period of decay. 
 



Nakagawa et al., 2024 

 

 
 

98 

[𝜕/𝜕x1(a)+ 𝜕/𝜕x1(b)]−1/𝑅 ∙[∇2(a)+ ∇2(b)]}Rij
(1,1)(a, b) =−𝜕Rijr

(1,1,1)(a, b, a)/𝜕xr(a)−𝜕Rijr
(1,1,1)(a, b, 

b)/𝜕xr(b) =− ∫ 𝐶ijr[-𝛽(a)𝛿r1-𝛽(-a-b)𝛿r1-ikr(b)]exp{-[𝛽(a)+𝛽(-a-b)]x1(a)-𝛽(b)x1(b)+ik(b)[-
x(a)+x(b)]dk(a)dk(b)− ∫ 𝐶ijr[-𝛽(b)𝛿r1-𝛽(-a-b)𝛿r1-ikr(a)]exp{-[𝛽(b)+𝛽(-a-b)]x1(b)- 

𝛽(a)x1(a)+ik(a)[x(a)-x(b)]dk(a)dk(b),        (24) 
 
where we use (20). Comparing with the both sides of (24), the particular solution must have the 
form as follows, 
 

[Rij
(1,1)(a, b)]p= ∫ 𝐷ijexp{-[𝛽(a)+𝛽(-a-b)]x1(a)-𝛽(b)x1(b)+ik(b)[-x(a)+x(b)]dk(a)dk(b)− 

 ∫ 𝐸ijexp{-[𝛽(b)+𝛽(-a-b)]x1(b)-𝛽(a)x1(a)+ik(a)[x(a)-x(b)]dk(a)dk(b).   (25) 
 
Moreover, substituting (25) in (24), we obtain the expression for the l.h.s. as 
 

∫ 𝐷ij【-𝛽(a)−𝛽(-a-b)- 𝛽(b)-1/R{[-𝛽(a)- 𝛽(-a-b)-ik1(b)]2-2k2
2(b)- 2k3

2(b)+[-𝛽(b)+ik1(b)]2} 】exp{-

[𝛽(a)+𝛽(-a-b)]x1(a)-𝛽(b)x1(b)+ik(b)[-x(a)+x(b)]}dk(a)dk(b)− ∫ 𝐸ij【-𝛽(a)−𝛽(-a-b)- 𝛽(b)-1/R{[-

𝛽(b)- 𝛽(-a-b)-ik1(a)]2-2k2
2(a)- 2k3

2(b)+[-𝛽(a)+ik1(a)]2} 】exp{- [𝛽(b)+𝛽(-a-b)]x1(b)- 
𝛽(a)x1(a)+ik(a)[x(a)-x(b)]}dk(a)dk(b).   (26) 

 
Then, compare the r.h.s. of (24) with (26), we get the following two relations, 
 

Dij【-𝛽(a)−𝛽(-a-b)- 𝛽(b)-1/R{[-𝛽(a)- 𝛽(-a-b)-ik1(b)]2-2k2
2(b)- 2k3

2(b)+[-𝛽(b)+ik1(b)]2} 
=-Cijr[-𝛽(a)𝛿r1-𝛽(-a-b)𝛿r1-ikr(b)],      (27) 

 
And 
  

Eij【-𝛽(a)−𝛽(-a-b)- 𝛽(b)-1/R{[-𝛽(b)- 𝛽(-a-b)-ik1(a)]2-2k2
2(a)- 2k3

2(a)+[-𝛽(a)+ik1(a)]2} 】 
=- Cijr[-𝛽(b)𝛿r1-𝛽(-a-b)𝛿r1-ikr(a)].     (28) 

 
It is, therefore, evident if the three-point triple correlations, in which each of three points is 
definitely separated one another, are given by the measurement, it is possible to obtain the 
particular solution firmly; such a solution does not contain any undetermined constant in it.  
 
It is the problem to specify the value of the constant Cijr in (27) and (28) by using the three-point 
correlations within a plane behind the grid, where the plane is parallel with it. The three-point 
correlations play a role in the initial conditions in this mathematical problem. The particular 
solution (25) will be able to be derived once Dij and Eij are obtained as the function of wave 
numbers in principle.  
 
Let’s demonstrate how to obtain the triple correlation mathematically. Firstly, it is necessary for 
us to make the measurement to get an analytical expression of the three-point triple correlations 
at a position within a plane of x1(a)=x1(b)=x1(c)=0 behind the grid, which is parallel to the plane. In 
this case, the three-point triple correlation  
 

Rijr
(1,1,1) (a, b, c) =∫ 𝐶ijrexp{-1/R[k2(a)x1(a)+k2(b)x1(b)+k2(c)x1(c)]+i[ki(a)xi(a)+ ki(b)xi(b)+ ki(c)xi(c) i]} 

𝛿[k(a)+ k(b)+ ki(c)]dk(a) k(b) k(c), 
 
Becomes 
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[Rijr
(1,1,1) (a, b, c)]x1(a)=x1(b)=x1(c)=0 =∫ 𝐶ijr exp[i[ki(a)xi(a)+ki(b)xi(b)- ki(a)xi(c) -ki(b)xi(c)]} dk(a) k(b) 

= ∫ 𝐶ijr exp{i[ki(a)𝜉i+ki(b)ηi]} dk(a) k(b), (29) 
 
where, 
 

ξ=x(a)-x(c) and η=x(b)-x(c). 
  
Then, operating  
 
1/(2𝜋)3∫ 𝑒xp[-iξiki’(a)] dξ to the both sides of (29), we get 
 

1/(2𝜋)3 ∫[Rijr
(1,1,1)(a,b,c)]x1(a)=x1(b)=x1(c)=0 exp[-iξiki’(a)]dξ=1/(2𝜋)3 

∫ 𝐶ijrexp{i[ki(a)𝜉i-ki’(a)ξi+ki(b)ηi]}dξ dk(a) dk(b) 
= ∫ 𝐶ijrexp[iki(b)ηi]𝛿[k(a)-k’(a)]dk(a) dk(b)= ∫ 𝐶ijrexp[iki(b)ηi] dk(b).   (30) 

 
This time, operating  

1/(2𝜋)3∫ 𝑒xp[-i𝜂iki’(b)] dη 
 
to the both sides of (30), we obtain 
 

1/ (2𝜋)6 ∫[Rijr
(1,1,1) (a, b, c)]x1(a)=x1(b)=x1(c)=0 exp[-iξiki’(a)-iηiki’(b)]dξdη 

= 1/(2𝝅)3∫ 𝐶ijr exp[iki(b)ηi-iki’(b)]dη dk(b)= ∫ 𝐶ijrexp[iki(b)ηi-iki’(b)]dη dk(b) 
=∫ 𝐶ijr𝛿[k(b)-k’(b)]dk(b)=Cijr,      (31) 

 
That is, if the three-point triple correlations are given experimentally as the function of vectors ξ 
and η, Cijr will be determined. Then, using Cijr, we can obtain Eij and Dij easily, and the wanted 
particular solution [Rij

(1,1) (a, b)]p in (.25) is derived. 
 
According to the diagram with respect to the turbulent energy spectrum function (Batchelor 
1956), most of turbulent energy is concentrated to the narrow range of wave-number, 
viz.⼁𝐤(a) ≪  1, 𝑎𝑛𝑑⼁𝐤(b)⼁ ≪  1. Thus, by expanding Dij and Eij in (25) asymptotically, and 
examining carefully each of these expansion coefficients, we could find how Dij and Eij depend on 
the wave-numbers, k(a) and, k(b). Having done those tasks as well as substituting Dij and Eij, which 
are expressed by wave-numbers, in (25), we can find how the particular solution [Rij

(1,1)(a, b)]p 
varies depending on the main stream-wise coordinate x. 
 
Substituting (23) in the solenoidal condition 

 

𝜕Ri,l
(1,1)(a, b)/𝜕xi(a)= 𝜕Ri,l

(1,1)(a, b)/𝜕xl(b) =0,     (32) 
 
we det the following relations, 
 

 𝜕Ri,l
(1,1)(a, b)/𝜕xi(a)= 𝜕[Ri,l

(1,1)(a, b)]c/𝜕xi(a)+ 𝜕[Ri,l
(1,1)(a, b)]p/𝜕xi(a)=0,  (33) 

 
And 

 

𝜕Ri,l
(1,1)(a, b)/𝜕xl(b)= 𝜕[Ri,l

(1,1)(a, b)]c/𝜕xl(b)+ =0.    (34) 
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In general, it is known that any complementary solution multiplied by arbitrary constant is also 
another complementary solution. In case of any particular solution, the situation is also same. By 
considering these facts, (33) and (34) provide us the following relations, 
 

𝜕[Ri, l
(1,1)(a, b)]c/𝜕xi(a) =0,       (35) 

 
𝜕[Ri, l

(1,1)(a, b)]p/𝜕xi(a)=0,       (36) 
 

𝜕[Ri, l
(1,1)(a, b)]c/𝜕xl(b)=0,       (37) 

 
And 

 
𝜕[Ri,l

(1,1)(a, b)]p/𝜕xl(b)=0.       (38) 
 For the later convenience, let’s rewrite (23) in the form, 
 

[Rij
(1,1)(a, b)]p= ∫ 𝐷ij exp{-[𝛽(a)+𝛽(-a-b)-𝛽(b)]x+r1/2∙[𝛽(a)+𝛽(-a-b)-𝛽(b)]-

ik(b)[x(a)x(b)]}dk(a)dk(b)+ ∫ 𝐸ijexp{-[𝛽(a)+𝛽(-a-b)+𝛽(b)]x+  
r1/2∙[𝛽(a)-𝛽(-a-b)-𝛽(b)]+ik(a)[x(a)-x(b)]}dk(a)dk(b),                                               (39) 

 
Where, 
 

x=[x1(a)+x1(b)]/2, and r1=x1(a)-x1(b). 
 

Because relations x≫r1 and 
 

𝛽 ≅k2/R≪ 1, 
 

we obtain 
 

 [𝛽(a)+𝛽(-a-b)-𝛽(b)]x≫ r1/2∙[𝛽(a)+𝛽(-a-b)-𝛽(b)], r1/2∙[𝛽(a)-𝛽(-a-b)-𝛽(b)].   (40) 
 
By using (40), (39) becomes 
 

[Rij
(1,1) (a, b)]p= ∫ 𝐷ijexp{-[𝛽(a)+𝛽(-a-b)-𝛽(b)]x-ik(b)[x(a)-x(b)]}dk(a)dk(b)+ 

 ∫ 𝐸ij exp{-[𝛽(a)+𝛽(-a-b) +𝛽(b)]x+ik(a)[x(a)-x(b)]}dk(a)dk(b).   (41) 
 
To know how the particular solution depends on the coordinate x, it may be sufficient to obtain 
the forms of Dij and Eij at x=0. Hence, when x=0, (41) reduces to  
 

 [Rij
(1,1)(a, b)]p= ∫ 𝐷ij exp{-ik(b)[x(a)-x(b)]}dk(a)dk(b)+ ∫ 𝐸ijexp{ik(a)[x(a)-x(b)]}dk(a)dk(b).    (42) 

 
Then, by using (36) and (42), we obtain 
 

𝜕[Rij(1,1)(a, b)]p/𝜕𝑥i(a)∫[−𝑖𝑘i(b)] Dij exp{-ik(b)[x(a)-x(b)]}dk(a)dk(b)+ 
 ∫[𝑖𝑘i(a)]Eij exp{ik(a)[x(a)- x(b)]}dk(a)dk(b)=0.     (43) 

 
As the result, we have the following two conditions regarding to Dij and Eij  
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ki(b)Dij=0,        (44) 
 

ki(a)Eij=0.        (45) 
 
Similarly, to the above, by using (38) and (42), we have 
 

kj(b)Dij=0,        (46) 
 

kj(a)Eij=0.        (47) 
 

At this stage, expand Dij near ▏k(a)▏= ▏k(b)▏=0 asymptotically, we get 
 

Dij[k(a) k(b)] = Dij
(0) +kk(a)Dijk

(a)+kk(b)Dijk
(b)＋kｋ(a)kl(a)Dijkl

(a,a)  

+kｋ(a)kl(b)Dijkl
(a,b)+kｋ (b)kl(b)Dijkl

(b,b)+O(k3).      (48) 

 
Then, we have by using (44),  
 

ki(b)Diｊ=ki(b)Dij
(0) +ki(b)kk(a)Dijk

(a)+ki(b)kk(b)Dijk
(b)+ki(b)kk(a)kl(a)Dijkl

(a,a)+ 
ki(b)kk(a)kl(b)Dijkl

(a,b)+ki(b)kk(b)kl
(b)Dijkl

(b,b)+O(k4)=0.    (49) 
 
Similarly, to the above, by using (46), we obtain 
 

kj(b) Dij=kj(b) Dij
(0) +kj(b)kk(a)Dijk

(a)+kj(b)kk(b)Dijk
(b)+kj(b)kk(a)kl(a)Dijkl

(a,a)+ 
kij(b)kk(a)kl(b)Dijkl

(a,b)+kj(b)kk(b)kl(b)Dijkl
(b,b)+O(k4)=0.    (50) 

 
(49) and (50) give us the following relations regarding to expansion coefficients of Dij. 
  

Dij
(0)=0,       (51) 

 
Dijk

(a)=0,       (52) 
 

Dijk
(b)=𝜀ijkD(b)+𝜀jikD(b)*,     (53) 

 
where D(b)* is the complex conjugate of D(b). 𝜀ijk is the alternating tensor, where 𝜀ijk=0, 1, or -1 when 
suffixes are not all different, in cyclic order or not in cyclic order, respectively. In addition, we use 
the following relations, 
 

Dijk
(b)+Dkji

(b)=0,      (54) 
 

Dijk
(b)+Dikj

(b)=0,      (55) 
 
where the tensor Dijk

(b) is Hermitian with respect to subscripts I and j,  
 

Dijk
(b)=Djik

(b)*,       (56) 
 

Dijkl
(a,a)=𝜀klmD

^

ijm,      (57) 
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where we use the condition 
 

Dijkl
(a,a)+ Dijlk

(a,a).      (58) 
 
And 
 

Dijkl
(a,b)=𝜀ijlD

^

k
(a,b)+𝜀jilD

^

k
(a,b)*,     (59) 

 
where we use the following relations,  

 
Dijkl

(a,b)+Dljki
(a,b)=0,      (60) 

 
And 
 

Dijkl
(a,b)+Dilkj

(a,b)=0,      (61) 
 
where tensor Dijkl

(a,b) is Hermitian with respect to subscripts I and j, so that 
 

Dijkl
(a,b)=Djikl

(ab)*.      (62) 
 
Now, consider how tensor Dijkl

(b,b) can be described. (49) and (50) give us immediately the 
following two relations 
 

ki(b)kk(b)kl(b)Dijkl
(b,b)=0,     (63) 

 
and 
 

kj(b)kk(b)kl(b)Dijkl
(b,b=0.     (64) 

 
Let’s introduce the second-order tensor as follow, 
 

Aij= kk(b)kl(b)Dijkl
(b,b),      (65) 

 
Since (63) and (65) give us ki(b)Aij=0, it may be possible to express Aij, as  
 

Aij=𝜀ipqkp(b)Cqj.      (66) 
 
Because Aij is a linear quadratic form of the components in k(b), Cqj may be expressed by 
 

Cqj=Γqjrkr(b),       (67) 
 
Thus, substituting (67) in (66), we have 
 

Aij=𝜀ipqΓqjrkp(b)kr(b).      (68) 
 
Similarly, to the above, 
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Aij=𝜀ipqΓ’qipkp(b)kr(b).      (69) 
 
Because (65) and (68) must be valid for all k(b), the former relation can be rewritten as 
 

Aij=kp(b)kr(b)Dijpr
(b,b).      (70) 

 
Hence, (67)-(69) give us  
 

Dijpr
(b,b)= 𝜀ipqΓqjr=𝜀jrqΓ’qip.     (71) 

 
Note that the last term in (71) becomes zero when r=j, for it is antisymmetric with respect to the 
interchange in r and j. It is, therefore, required that Γqjr has those properties, so it can be expressed 
by  

 

 Γqjr =𝜀jrbD
^

qb
(b,b),      (72) 

 

where D
^

qb
(b,b) is an arbitrary tensor. (71) and (72) give us the general form of Dijkl

(b,b) as follow, 
 

Dijkl
(b,b)=𝜀ika𝜀jlbD

^

ab
(b,b) .     (73) 

 
 Subtituting (51)-(61) and (73) in (48), we get 
 

Dij=kk(b)(𝜀ijkD(b)+𝜀jikD(b)*)+kk(a)kl(a)𝜀klmD
^

ijm
(a,a)+ kk(a)kl(b)(𝜀ijlD

^

k
(a,b)+𝜀jilD

^

k
(a,b)*)+ 

kk(b)kl(b)𝜖ika𝜖jlbD
^

ab
(b,b)+O(k3).       (74) 

 
At this stage of the analyses, it is necessary for us to quote Cramér’s theorem (1940), to specify 
the coefficients of kk(b) in (74) to become zero. His theorem may be stated in such a way “the 
necessary and sufficient condition that Rij(r) is the correlation tensor of a continuous stationary 
random process is that it can be expressed of the form 
 

Rij (r)=∫ 𝛷ij(k) exp(ikiri)dk, 
 
where Φij(k) is a complex tensor that satisfies the following two conditions, 
 

(a) ∫▏Φij(k) ▏dk< ∞, 
 
and  
 

(b) Φ=xixj
*Φij(k), 

 
is a non-negative quadratic form. That is, Φ ≥ 0 for an arbtrary choice of the complex constants 
xi. “In his theorem, dk is written by dk1dk2dk3, the integrals are taken over the whole wave-number 
space, and xi

* denotes the complex conjugate of xi. The behavior of the spectrum Φij(k) at small 
values of k may be determined with the aid of his theorem and the incompressible condition. We 
may be required to assume that a few of the first derivatives for Φij(k) at k=0 exist. It is known that 
stationary random functions do not necessarily satisfy such conditions in general, but some 
experiments confirm the validity of the present assumption in case of homogeneous turbulence. 
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In the neighborhood of k=0, the spectrum tensor can be expressed by 
 

Φij(k) = Bij + kkBijk +kkklBijkl+ O(k3),     (75) 
 

where the tensor coefficients Bij ,Bijk , and Bijkl depend on time only. The incompressible condition, 
kiΦij(k)=kjΦij(k)=0 requires  
 

kiBij + kikkBijk + kikkklBijkl + O(k4) =0,     (76) 
 

being satisfied by every vaue of k only if Bij =0. Then, noting that Cramér’s theorem assures us 
  

xixj
*kkBijk ≥ 0        (77) 

 
for all sufficiently small k and arbitrary xi. Because the sign of (77) could be altered by reversing 
the direction of k, the only possibility is Bijk=0. The expression of Φij(k) in the vicinity of k=0 must 
be  
 

Φij(k) = kkklBijkl + O(k3).      (78) 
 
The energy spectrum tensor of Rij

(1,1) (a,b) in (23) is no more than Φij(k). The tensor coefficient of 
the first-order wavenumber corresponding to Bijk in the above relation, becomes zero. On one 
hand, the energy spectrum tensor Cij of the complementary solution has also not the tensor 
coefficient for the first-order wave-number, as already being showed in (4-20) in part 1 of the 
present paper. It is, therefore, evident that the tensor coefficient of kk(b) in (74) reduces to zero. 
That is,  
 

Dij=kk(a)kl(a)𝜀klmD
^

ijm
(a,a)+ kk(a)kl(b)(𝜀ijlD

^

k
(a,b)+𝜀jilD

^

k
(a,b)*)+kk(b)kl(b)𝜖ika𝜖jlbD

^
(b,b)+O(k3).  (79) 

 
In particular, when i=j for the energy spectrum of turbulent intensity, we obtain 
 

Dii = kk(a)kl(a)𝜀klmD
^

iim
(a,a)+kk(b)kl(b)𝜖ika𝜖ilbD

^

ab
(b,b)+O(k3).   (80) 

 

Similarly to Dij , expanding Eij in the vicinity of ▏k(a) ▏= ▏k(b) ▏=0 in terms of conditions (45) and 
(47), we get the following relations with respect to the expansion coefficients, 

 
Eij

(0)=0,        (81) 
 

Eijk
(b)=0,        (82) 

 
Eijk

(a)=𝜀ijkE(a) + 𝜀jikE(a)*,       (83) 
 

Eijkl
(b,b) = 𝜀klmE

^

ijm
(b,b),       (84) 

 

Eijkl
(a,b) = 𝜀ijkE

^

l
(a,b) + 𝜀jikE

^

l
(a,b)*,      (85) 

 

Eijkl
(a,a) = 𝜀ika𝜀jlbE

^

ab
(a,a).       (86) 

 



Advances in Social Sciences and Management (ASSM) 

 

 
 

105 

Based on Cramér’s theorem, (83) becomes zero, viz. 
 

Eijk
(a)=𝜀ijkE(a) + 𝜀jikE(a)* =0.      (87) 

 
Hence, the concrete expression of Eij may be expressed by 
 

Eij = kk(b)kl(b)𝜀klmE
^

ijm
(b,b) + kk(a)kl(b)(𝜀ijkE

^

l
(a,b)+𝜀jikE

^

l
(a,b)*)+ kk(a)kl(a)𝜀ika𝜀jlbE

^

ab
(a,a) + O(k3).  (88) 

 
In particular, when i=j, corresponding the power spectrum of the turbulent intensity, 
 

Eii = kk(b)kl(b)𝜀klmE
^

iim
(b,b) + kk(a)kl(a)𝜀ika𝜀ilbE

^

ab
(a,a) + O(k3).  (89) 

 
To derive the turbulent intensity relating to the particular solution, by definition, put i=j,  

u
-

p
2 =[Rii

(1,1) (a, b)]p =∫ 𝐷iiexp{-2x/R[k2(a)+ki(a)ki(b)+k2(b)]}dk(a)dk(b)+ 
 ∫ 𝐸ii exp{-2x/R[k2(a)+ki(a)ki(b)+k2(b)]}dk(a)dk(b),   (90) 

 

where u
-

p
2 is the turbulent intensity due to the particular solution. Now, substituting (80) and (89) 

in (90), we get 
 

u
-

p
2 =∫[(𝜀klmD

^

iim
(a,a)+ 𝜀ika𝜀ilbE

^

ab
(a,a))kk(a)kl(a) +(𝜖ika𝜖ilbD

^

ab
(b,b)+ 𝜀klmE

^

iim
(b,b)kk(b)kl(b)]∙ 

exp{-2x/R[k2(a)+ki(a)ki(b)+k2(b)]}dk(a)dk(b),     (91) 
 
where we use the relation O(k2) ≫ O(k3). For the sake of future convenience, rewrite (91) as  
 

u
-

p
2 =∫[G(a,a)kk(a)kl(a) +H(b,b)kk(b)kl(b)]∙ 

exp{-2x/R[k2(a)+ki(a)ki(b)+k2(b)]}dk(a)dk(b),    (92) 
 
with  
 

G(a,a)= 𝜀klmD
^

iim
(a,a)+ 𝜀ika𝜀ilbE

^

ab
(a,a) ,     (93) 

 
And 

 

H(b,b)= 𝜖ika𝜖ilbD
^

ab
(b,b)+ 𝜀klmE

^

iim
(b, .     (94) 

 
Let’s rewrite (92) as follow, 
 

u
-

p
2 =∫[G(a,a)kk(a)kl(a) +H(b,b)kk(b)kl(b)]∙ exp{-2x/R∙[ki(a)+ki(b)/2]2-3xk2(b)/(2R)}dk(a)dk(b),  (95) 

 
Finally, let’s us change variables in (95) in the following manner, 
 

Vi=ki(b),        (96) 
 
And 
 

Wi=ki(a) + ki(b)/2=ki(a)+Vi/2.      (97) 
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Thus, the Jacobian becomes as 
 

J1=𝜕(W1, W2, W3, V1, V2, V3)/𝜕[k1(a), k2(a), k3(a), k1(b), k2(b), k3(b)] =1.  (98) 
 
Using (96)-(98), we can rewrite (95) of the form, 
 

u
-

p
2 =∫[G(a,a)(WkWl-WkVl/2-VkWl/2+VkVl/4) +H(b,b)VkVl]∙ exp{-2x/R∙W2-3xV2/(2R)}dWdV.  (99) 

 
Having done this preparation, let’s change the variables in (99) from Wi and Vi to wi and vi, 
respectively, as follows, 
 

Wi =1/2∙ (R/x)1/2 wi,       (100) 
 
and 

Vi=[R/(3x)]1/2 vi.       (101) 
 
The Jacobian can be expressed by 
 

J2 =𝜕(Wi, Vi)/𝜕(wi, vi) = 
 

⎪𝜕𝑊i/𝜕wi 𝜕𝑊i/𝜕vi⎪ 
 

⎪𝜕Vi/𝜕wi 𝜕Vi/𝜕v ⎪ 
 

With (100) and (101), we can calculate each of the elements in the above determinant as follow. 
 

⎪1/2∙ (R/x)1/2 0 ⎪ 
 

⎪0 [R/(3x)]1/2 ⎪ 
 

= 1/2∙ (R/x)1/2 ∙ [R/(3x)]1/2 

 

=1/2∙1/31/2∙(R/x) 
 

=(1/12)1/2∙(R/x) 
 
Thus, finally Jacobian becomes 
 

J2 = (1/12)1/2∙(R/x).      (102) 
 
By using (100) – (102), we can rewrite (99) as follow, 
 

u
-

p
2 =∫[G(a,a)( [1/2∙ (R/x)1/2]2 wkwl-1/4∙ (R/x)1/2[R/(3x)]1/2wkvl-1/4∙ (R/x)1/2[R/(3x)]1/2vkwl+ 

R/(3x)/4) vkvl+ H(b,b)(R/(3x) vkvl]∙ exp(w2/2-v2/2)[1/2∙(R/x)1/2[R/(3x)]dw. dv,  (103) 
 
Now, let’s define Hermite polynomials in the following way, 
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wi=₤i
(1)(w),       (104) 

 
vi= ₤i

(1)(v),                                                                                    (105) 
 

wiwj – 𝛿ij = ₤ij
(2)(w),                                                                      (106) 

 
vivj - 𝛿ij = ₤ij

(2)(v).                                                                           (107) 
 
Then, substituting (104)-(107) in (103), we get  
 

u
-

p
2 =∫【G(a,a){ [1/2∙ (R/x)1/2]2 [₤kl

(2)(w)+𝛿kl]-1/4∙ (R/x)1/2[R/(3x)]1/2₤k
(1)(w) ₤l

(1)(v)- 1/4∙ 

(R/x)1/2[R/(3x)]1/2[₤k
(1)(v)₤l

(1)(w)]+R/(3x)/4) [₤kl
(2)(w)+𝛿kl]】+H(b,b)[R/(3x) [₤kl

(2)(w)+𝛿kl]∙ 
exp(w2/2-v2/2)[1/2∙(R/x)1/2[R/(3x)]1/2dw.dv.       (108) 

 
Moreover, using the orthogonality of Hermite function, together with the following relations 
 

∫ ₤kl
(2)(w)∙exp(-w2/2) dw = ∫ ₤kl

(2)(v)∙exp(-v2/2) dv =0,   (109) 
 
(108) becomes 
 

u
-

p
2 =2𝜋3/(931/2)∙ 𝛿kl(G(a,a) + H(b,b))(R/x)4,     (110) 

 
Recalling the notation G (a,a) and H(b,b), we obtain the final form; 
 

u
-

p
2 =2𝜋3/ (931/2)∙ 𝛿kl ((E

^

aa
 (a,a) + D

^

aa
(b,b) )R4x-4,     (111) 

 

Finally, referring to (23) for the decay law u
-

c
2 for turbulent energy in the final period as well as 

(111), we have the decay law for turbulent energy in the transitional period as follow 
 

u
-

2 =u
-

c
2 +u

-

p
2 = 3a2/32∙(R/2)5/2∙x-5/2 + 2𝜋3/(931/2)∙ 𝛿kl((E

^

aa
 (a,a) + D

^

aa
(b,b) )R4x-4,  (112) 

 
Comparison between the present theory with an experiment 
 
Figure 2 shows the comparison between the present theory with the experiment by Batchelor-
Townsend (1948). The curve 1 is the present theory of the decay law for turbulent energy in the 
final period, which is expressed by (4.23) in Part 1. This problem has been solved exactly as an 
initial value problem based on reliable data as depicted in Figure 3. 
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Figure 2: Energy decay of grid-produced turbulence. 

 
The comparison is done for the final period corresponding to x/M≥ 600 in the experiment. It is 
evident that the curve 1 is in good agreement with the experimental data for this period. In terms 

of Taylor’s hypothesis, the present decay law for turbulent energy u
-

2 depending on x-5/2 in the final 
period is consistent with the classical one. Present curve 2 that is expressed by (112) represents 
the decay law for turbulent energy in the transitional period, for it includes effects of the double 
as well as triple correlations, 
 

 
Figure 3: Longitudinal double correlation function. 

a = 0.208934 
 

but neglects the quadruple correlations or assumes four-particle molecular chaos. This curve 
agrees well with the experimental data corresponding to x/M≥ 460. However, it must be noted 
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that owing to the deficit of the experimental data for the triple correlations at the initial plane 
behind the grid, we could not determine the constant value in front of x4 in (112). In another words, 
the mathematical expression of the triple correlations to be used as the initial condition required 
in the present theory does not exist currently as far as the present author knows. Thus, such an 
experiment is strongly required to get the expression of triple correlations. So, this work is left for 

the future, but for tentative comparison with the data on the turbulent intensity u
-

2, the value of 
B is set to be of -1.5x105. In another words, this is the assumption that both of the double 
correlation and the triple correlation are given at the same plane behind the grid.  
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Appendix 1: Determinant 

If in the determinant ⼁a⼁, we delete the ith row and jth column, and form a determinant from 
all the elements remaining, we shall have a new determinant of n-1 rows and columns. This new 
determinant is defined to be the minor of the element aij. For example, if ⼁a⼁is a determinant 
of the third order, the minor of the element a32 is denoted by M32. 
 
The cofactor of an element of a determinant aij is the minor of that element with a sign attached 
to it determined by the numbers i and j which fix the position of aij in the determinant ⼁a⼁The 
sign is chosen by the equation 
 

Aij= (-1) i+jMij, 
 
where Aij is the cofactor of the element aij and Mij is the minor of the element aij.  
 
In case of the nth-order determinant, as the unique nth order homogeneous polynomial 
 

⼁a⼁is given by 
 

⼁a⼁=∑ 𝑎𝑛
𝑗=1 ijAij, 

 
where the aij quantities must be taken either from a single row or a single column. In this case the 
cofactors Aij are determinants of the (n-1) st order, but they may be in turn expanded by the above 
rule, and so forth, until the result is a homogeneous polynomial of the nth order.  
 

Appendix 2: Hermite Function 
The function ϕn(x)=exp(-x2/2) Hn(x) (n=0, 1,2, …), which are often referred to as Hermite functions, 
satisfy the differential equation 
 

d2w/dz2 + (2n+1-z2) w = 0, (n=0, 1, 2, …) 
 

and  
 

∫ 𝜑
∞

−∞ n(x)𝜑n’(x)dx=2nn! 𝜋1/2𝛿n’
n. 


