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Abstract: 
This work assessed the Spatio-Temporal of the Oyimo Forest Reserve Degradation in 
Ondo State, Nigeria towards the development of applicable guidelines. Forest 
degradation is a changing process that impacts the values of a forest, reducing its ability 
to provide products and services. Information derived from land use, land cover change 
and forest degradation are important to land conservation, sustainable development, 
and management of forest reserve. To identify land use, land cover changes and 
degradation; remote sensing data from satellite imagery and image processing 
techniques was done within three dates of 1998, 2011 and 2021 using Landsat images 
of 30 m resolution. ERDAS Imagine, IDRISI Selva, QGIS and ArcGIS software were used 
to classify, identify the changes and degraded area. The classification was done using 
five land cover classes (forest, settlement, water body, farmland and bare surface). 
Preprocessing and classification of the images were analyzed carefully and accuracy 
assessment was tested separately using the kappa coefficient. The results showed that 
Oyimo forest area was 35,257.22ha in 1998, 22,708.04ha in 2011 and 23, 903.2ha in 
2021. Prediction analysis showed that if measures are not put in place in the forest 
reserves will be seriously degraded and if this happen there would be serious climate 
change as more carbon are releasing to the atmosphere. The highest carbon loss for 
this period was 27,660 tons, and the lowest carbon loss was 687 tons in year 2017 and 
2003. Land area improved was 11, 978.02184, land area stable was 29,032.919, Land 
area degraded was 18,727.849 and land area with no data was 19.21016 the correlation 
between carbon emission and loss of forest is r2 0.8506 and organic carbon and loss of 
forest is r2 0.9959, which was highly correlated. It was concluded that there was 
degradation in the Oyimo forest reserve between 1998 and 2011, between 2011 and 
2021 there was significant improvement in the forest. In order to address particular 
problems like carbon loss, habitat degradation, and soil productivity, as well as to 
propose pathways for improving forest quality, remote sensing and GIS can be used as 
space quantification tools for forest conservation. 
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INTRODUCTION 

Forest degradation is a changing process that impacts the values of a forest, reducing its ability 
to provide products and services. These changes are the result of disturbances that vary in size, 
frequency, origin, quality, and severity. Disturbance can be natural, caused by humans, or a 
combination of the two. Human-induced disturbance might be purposeful (direct), such as 
logging or grazing, or unintentional (indirect), such as the spread of an invasive alien species (FAO, 
2009). 
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Deforestation is a major environmental, social, and economic issue. However, quantifying the 
scope of the problem is challenging since forest degradation has numerous causes, manifests 
itself in various forms and with varying intensity, and is viewed differently by different 
stakeholders (ITTO, 2002). To serve different reasons, forest degradation may need to be 
measured at different scales. Assessment at the scale of a stand or site, for example, is frequently 
required for effective local-scale corrective intervention. Larger scale assessments, on the other 
hand, are required for national and international reporting and other objectives. Given the 
importance of forests to human well-being, the state of the forests is a concern for all of us. We 
need to know if forests are degrading and, if so, what is causing it so that we can take efforts to 
stop and reverse the process. Good information on forest condition and the amount of forest 
degradation would allow for the prioritising of human and financial resources to prevent further 
degradation, restore and protect the forest. 
 
Restoration goals are increasingly being framed in the context of complex ecosystems with 
contingent and stochastic dynamics. Precise forest restoration targets are thus rarely achievable, 
especially in environmental futures with no recent precedents (Hiers et al., 2016). Alternative 
trajectories driven by process-based dynamics responding to changing environmental conditions 
are more likely results of restoration initiatives, according to (Hughes et al. 2012). 
 
Statement of the Research Problem 
By steadily diminishing the Oyimo forests, we endanger our quality of life, jeopardise climate 
stability and local weather, endanger the existence of other species, and undermine the vital 
services supplied by biological diversity. Deforestation can cause tropical diseases to arise, and 
outbreaks of novel diseases, particularly deadly hemorrhagic fevers like Ebola and Lassa fever, 
are a subtle but important consequence of forest degradation. Nonetheless, the primary goal of 
this research is to identify and mitigate the causes of forest degradation in the Oyimo forest 
reserve. Understanding distinct degradation processes is essential for developing appropriate 
ways for measuring and monitoring. Various types of degradation will have varying effects on 
forest carbon storage, and the outcome is determined by the indicators used to measure the 
degradation, which can be in-situ or by remote sensing approaches. Through the REDD-plus 
scheme (Reducing Emissions from Deforestation and Forest Degradation in Developing 
Countries), great work has been made on climate change mitigation measures. Estimating above-
ground biomass (AGB) in tropical and subtropical countries with a biophysical environment 
remains difficult (Lu, & Weng, 2007). As a result, forest conservation strategies based on spatial 
monitoring that address specific risks such as carbon loss, soil productivity, and habitat 
degradation may present avenues for improving forest quality. As a result, the ecosystem must 
be built in a planned manner, and GIS may help with this planning process as a decision support 
system. Remote sensing satellites are also a good instrument for studying historical land use land 
cover change (LULCC) and providing data in inaccessible places. 
 
Justification 
Accurate estimates of terrestrial carbon storage over an area are essential to address the growing 
threat to the local climate posed by rising concentrations of greenhouse gases in the Oyimo 
community's environment. The remote sensing and geographic information system (GIS) provide 
a more flexible and powerful tool than traditional data processing systems, as it allows for the 
manipulation and combination of large volumes of different types of data sets into new data sets 
that can be displayed in the form of thematic maps. The use of GIS permits the creation of models 
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from which a new thematic map (for example, a forest degradation map) can be created from a 
collection of thematic maps (Harasheh, 1994). 
 
The study objectives are: 

1. Detection and prediction of changes in land use/land cover in the Oyimo forest reserve. 
2. Estimation of Oyimo forest reserve total carbon stores for biomass and restoration. 
3. Estimation of Oyimo forest soil organic matter for ecological services. 
4. To ascertain the relationship between forest loss and carbon emissions in Oyimo forest. 

 
STUDY AREA AND METHODOLOGY 

Study Area 
Oyimo forest reserve in Supare, Akoko South West Local Government Area of Ondo State, 
Nigeria is geographical located in Latitude: 7° 22' 17" N to 70 54' 28" N and 5° 43' 40" E to5° 51' 19" 
E as in figure 1 It has an area of 226 km2 and a population of 239,486 at the 2006 census. 
 

 
Figure 1: Study area Map 

 
Vegetation 
The Oyimo Forest Reserve, is covered an area of 59, 758 hectares at inception (Ezealor, et al, 
2013). Their crowns touch one another thus forming a complete cover over the layers below. Their 
crowns were also draped by various climbers, which tended to bind crowns of many trees 
together. Some characteristics of the trees observed included tall large trunks, light thin barks 
(peeling off in some species), buttress roots, stilt roots, leaves with drip tips and some leaves with 
epiphyllous algae. These characteristics are typical for forest trees and they have been observed 
elsewhere. 
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Climate 
The climate of the Oyimo forest reserve, Akoko South west, Ondo states in the southwestern part 
of Nigeria is that of tropical rain forest type, with distinct wet and dry seasons. The tropical climate 
of the area is broadly divided into two seasons: the dry season and the rainy season. The dry 
season comprises the Harmattan season and heat period, while the wet season begins in March, 
ending in early April, and the wet season ends in October or occasionally early November. The 
annual average rainfall ranges between 1480 mm and 2500 mm, the relative humidity of 60 to 
85%, and the temperature of the area is between 24°C and 32°C (degree Celsius) according to 
(Ajayi, 2008). 
 

METHODOLOGY 
Data Acquisition and Source 
Reconnaissance: 
The purpose of the survey and ground truth campaign was to verify the classified signatures of 
the satellite images in Oyimo Forest Reserve and to monitor the rapid changing of the landscapes. 
A reconnaissance study was conducted to determine the sample points, taking into consideration 
remote sensing and geographic information system (GIS) work. This was done to help the 
researcher have an overview of the area under study and to assist in the feasibility and logistics 
plans for the fieldwork. Fieldwork/Data Collection: One fieldwork project was conducted at the 
Oyimo Forest Reserve on December 22, 2021. During the field work, the coordinates of land use 
samples were collected. Some of these samples were used as training sites for the supervised 
classification and also to interpret the clusters derived during the unsupervised classification. The 
second set of samples was used for conducting accuracy assessments (user’s and producer’s 
accuracies) to test the consistency and reliability of the supervised classification. 
 
Remote Sensing Image: 
The Landsat data was acquired from the global land-cover website at the University of Maryland, 
USA (URL; http://glcfapp.umiacs.umd.edu:8080/esdi/index.jsp). The acquired images were 
Enhanced thematic mapper (ETM) of 1998, Enhance Thematic Mapper plus (ETM+) image of 2011 
and the Operational land imager (OLI) of 2021 respectively, as shown in Table 1. The satellite data 
has 30m spatial resolutions, the ETM Plus images have a spectral range of 0.45-2.35 micrometers 
with bands 1,2,3,4,5,6,7 and 8 while the Operational Land Imager (OLI) extends to band 12. 
 

Table 1: the Characteristics of Landsat Imagery 
S/N Data Type Year Spatial Resolution 
1 Landsat Enhanced Thematic mapper (TM)  8/4/1998 30 meters 
2 Landsat Enhanced Thematic mapper (ETM+)  8/4/2011 30 meters 
3 Landsat Operational Land Imager (OLI) 84/2021 30 meters 

 
Data Pre-Processing: 
The satellite images were preprocessed to correct errors that occurred during data scanning, 
transmission, and recording. The pre-processing steps used were: 

• Radiometric correction to compensate for the effects of the atmosphere; 
• Geometric correction, i.e., registration of the image to make it usable with other maps or 

images of the applied reference system; and 
• Noise removal to remove any type of unwanted noise due to the limitation of transmission 

and recording processes. 
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Data Post Processing 
Image Compositing: 
A false Colour Composite operation was performed using the ERDARS Imaging software and the 
Landsat bands were combined in the order of band 4, band 3 and band 2 for Landsat ETM and 
ETM+ while Landsat OLI was composited in the order of band 5,4 and 3 due to change in sensor. 
 
Image Classification: 
The false colour composite was further classified using the maximum likelihood classification 
technique. A supervised classification was performed by creating a training sample, and based on 
the spectral signature curve, various land use classes were created, namely, high-density Forested 
area; low-density forested area; farmland; water body; settlement; and bare surface The 
classified map was generated for the years 1998, 2011, and 2021, respectively. Ground truthing 
was carried out to verify the results of the classified maps. 
 
Accuracy Assessment: 
Accuracy assessment is essential for individual classifications if the classification data is to be 
useful in change detection (Owojori and Xie, 2005). For the accuracy assessment of land cover 
maps extracted from satellite images, a stratified random method was used to represent different 
land cover classes in the area. The accuracy was assessed using 120 points based on ground truth 
data and visual interpretation. The comparison of classification results and reference data was 
carried out statistically using error matrices. In addition, a nonparametric Kappa test was also 
performed to measure the extent of classification accuracy, as it not only accounts for diagonal 
elements but for all the elements in the confusion matrix. 
 
Land Use/Land Covers Change Detection and Prediction: 
The post-classification change detection technique, performed in Idrisi-Selva, was employed by 
the study. Post-classification in urban environments has been effectively used by various 
researchers due to its efficiency in detecting the location, nature, and rate of change (Hardin et 
al. 2007). Another technique used to obtain the changes in land cover and use during the specified 
time period was the overlay procedure. For all these tasks, Land Change Modeller (LCM) used the 
LULC maps generated for the years 1998, 2011, and 2021. The change analysis was performed for 
two separate periods, one from 1998 to 2011 and another from 2011 to 2021. A two-way cross-
matrix obtained by the application of this was used to describe the key change types in the study 
area. Cross-tabulation analysis was conducted in order to determine the quantitative conversions 
from a particular category to another land cover category and their corresponding area over the 
evaluated period on a pixel-by-pixel basis. Thus, a new thematic layer was also produced from the 
two five-class maps, containing different combinations of ‘‘from and to’’ change classes. The 
transition probability between 1998 and 2021 was calculated in Markov chain analysis. 
 
Quantification of Carbon Stock and Soil Organic Carbon 
The IPCC 2000 embedded in the plugin QGIS was adopted for the analysis of carbon stock and 
soil organic carbon. 
 
Sustainable Development Goal 15.3 intends to combat desertification, restore degraded land and 
soil, including land affected by desertification, drought, and floods, and strive to achieve a land 
degradation-neutral world by 2030. In order to assess the progress towards this goal, the agreed-
upon indicator for SDG 15.3 (proportion of land area degraded) is a combination of three sub-
indicators: change in land productivity, change in land cover, and change in soil organic carbon. 
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All these indicators are performed in QGIS. Moreover, soil organic carbon has three sub-
indicators: productivity trajectory, productivity state, and productivity performance. 
 
Productivity Trajectory:  
A Mann-Kendall non-parametric significance test is then applied, considering only significant 
changes that show a p-value ≤ 0.05. Positively significant trends in NDVI would indicate potential 
improvement in land condition, and negatively significant trends would indicate potential 
degradation. 
 
Productivity State:  
For each pixel, use the annual integrals of NDVI for the baseline period to compute a frequency 
distribution. That expanded frequency distribution curve is then used to define the cut-off values 
of the 10 percentile classes. Possible values range from 1 (lowest class) to 10 (highest class); assign 
to the mean NDVI for the comparison period the number corresponding to that percentile class. 
Determine the difference in class number between the comparison and the baseline period 
(comparison minus baseline). If the difference in class between the baseline and the comparison 
period is ≤ 2, then that pixel could potentially be degraded. If the difference is ≥ 2, that pixel would 
indicate a recent improvement in terms of primary productivity. Pixels with small changes are 
considered stable. 
 
Productivity Performance:  
The indicator is computed as follows: 

1. Define the analysis period, and use the time series of the NDVI to compute the mean of 
the NDVI for each pixel. 

2. Define similar ecologically similar units as the unique intersection of land cover and soil 
type. 

 
For each unit, extract all the mean NDVI values computed in step 1 and create a frequency 
distribution. From this distribution, determine the value that represents the 90th percentile (we 
don’t recommend using the absolute maximum NDVI value to avoid possible errors due to the 
presence of outliers). The value representing the 90th percentile will be considered the maximum 
productivity for that unit. Compute the ratio of the mean NDVI and maximum productivity (in 
each case, compare the mean observed value to the maximum for its corresponding unit). If the 
observed mean NDVI is lower than 50% of the maximum productivity, that pixel is considered 
potentially degraded. 
 
Statistical Analysis of Variable 
Linear regression analysis was used in Excel software to carry out correlations between forest loss 
and carbon stock to determine the level of confidence. As this formula imply,  
 

y = ax+b+Ԑ       (1) 
 

Where,  
Ø Y = dependent variable 
Ø X = independent variable (explanatory) 
Ø A = intercept 
Ø B = slope 
Ø Ԑ = residual (error) 
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Figure 2: Flowchart methodology 

 
RESULTS AND DISCUSSION 

Results 
Analysis of Land Use and Land Cover in the Oyimo Forest Reserve From 1998 To 2021: 
The results of the image classification of the Oyimo forest reserve in 1998 in Figure 3 showed that 
the total land area of the Oyimo forest reserve was 59,758 hectares (ha). The accuracy of the 
assessment of land use and land cover is summarised in Table 2. The forest area is 59%, the 
settlement is 9%, the water body is 4%, the farmland is 27%, and the bare surface is 1%, 
respectively. Total accuracy for the 1998 classified image was 82.98%, and Kappa statistics were 
0.8725. 
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Figure 3: 1998 land use/land cover of Oyimo forest reserve  

(Source: fieldwork 2021) 
 

Table 2: Accuracy assessment of 1998 land use/land cover of Oyimo forest 
CLASS Forest Settlement Water 

body 
Farmland Bare 

surface 
Row 
Total 

User Accuracy  

Forest 83 14 4 0 0 101 82.18 % 
Settlement  87 9 3 0 99 87.77 % 
Water body  0 1 0 0 1 63.45 % 
Farmland 0 0 6 28 0 34 82.35 % 
Bare surface 0 0 0 5 16 21 76.19 % 
Total 83 101 20 36 16 256  
Producer 
Accuracy  

84.00 
% 

86.14 % 65.00 % 77.78 % 86.00 %  Total Accuracy 
= 82.98 % 

Overall Kappa Statistics = 0.8725 (Source: fieldwork 2021) 
 
It was drawn from Table 3 and Figure 4 of the 2011 classification that the forest area is the largest 
in the study area. The forest area was 22,708.04 ha, or 38%; settlement 9,261.28 ha, or 16%; water 
body 11,354.02 ha, or 19%; farmland 15,537.08 ha, or 26%; and bare surface 596.58 ha, or 1%, 
respectively. Its accuracy assessment was 81.14% and Kappa statistics were 0.9000. 
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Figure 4 2011 land use/land cover of Oyimo forest reserve 

 (Source: fieldwork 2021) 
 

Table 3: Accuracy assessment of 2011 land use land cover of Oyimo forest 
CLASS Forest Built-

up 
Water 
body 

Rock 
outcrop 

Bare 
surface 

Row 
Total 

User Accuracy  

Forest 79 5 2 2 2 90 87.78 % 
Settlement 1 4 0 0 0 5 80.00 % 
Water body 0 0 1 0 0 1 68.00 % 
Farmland 1 1 3 28 3 36 77.78 % 
Bare surface 2 2 2 3 31 40 67.50 % 
Total 86 12 8 33 36 172  
Producer 
Accuracy  

95.58 
% 

63.33 
% 

52.50 % 85.84 % 86.11 %  Total Accuracy = 
81.14 % 

Kappa Statistics = 0.9000 (Source: fieldwork 2021) 
 
The results of the image classification for 2021 in Figure 5 showed that the total land area of the 
Oyimo forest reserve was 59,758 hectares (ha). The accuracy of the assessment of land use and 
land cover is summarised in Table 4. The forest area was 35257.22 ha, the settlement was 597.58 
ha, the water body was 3585.48 ha, the farmland was 10159.03 ha, and the bare surface was 
4780.64 ha, respectively. Total accuracy for the 2021 image was 84.35%, and Kappa statistics 
were 0.8375. 
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Figure 5: 2021 land use/land cover of Oyimo forest reserve (Source: fieldwork 2021) 

 
Table 4: Accuracy assessment of 2021 land use/land cover of Oyimo forest 

CLASS Forest Built-
up 

Water 
body 

Rock 
outcrop 

Bare 
surface 

Row 
Total 

User Accuracy  

Forest 21 0 0 0 0 21 91.30% 
Settlement 0 18 0 0 0 18 78.26% 
Water body 0 0 19 0 0 19 82.61% 
Farmland 0 0 0 19 0 19 82.61% 
Bare surface 0 0 0 0 20 20 86.96% 
Total 21 18 19 19 20 97  
Producer 
Accuracy  

87.50% 90.00% 79.17% 86.36% 83.33%  Total Accuracy = 
84.35% 

Overall Kappa Statistics = 0.8375 (Source: fieldwork 2021) 
 
Table 5 shows the land mass and percentage of each class from 1998 to 2021 
 

Table 5: Year wise area covered and percent 
Land use Land cover class 1998 2011 2021 

Hectares (%) Hectares (%) Hectares (%) 
Forest 35,257.22 59 22,708.04 38 23,903.2 40 
Settlement 5,378.22 9 9,561.28 16 10.756.44 18 
Water body 2,390.32 4 11,354.02 19 6,573.38 11 
Farmland 16,134.66 27 15,537.08 23 17,329.82 29 
Bare surfaces 597.58 1 597.58 1 1,195.16 2 
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Land Use Land Cover Change Detection and Prediction 
It shows in figure 6 that other classes gain from forests, but water bodies gain more area than the 
rest of the classes, and water bodies gain close to 600 hectares. The least gained from the forest 
among the classes was the bare surface, which was about 10 hectares. Similarly, forest loss was 
approximately -900 hectares, the highest loss class among all classes. Bare surface had the least 
loss among all the classes, losing about 5 hectares of land. 
 

 
Figure 6: Gains and Losses between 1998 and 2011 Land use/land cover  

(Source: Fieldwork 2021) 
 
Analysis in Figure 7 shows that all other classes gain from forest, but farmland gains more area 
than the rest of the classes, and its gains were close to 280 hectares. The water body, which 
covered about 10 hectares, benefited the least from the forest. Similarly, water bodies lose about 
-270 hectares, the highest reduction class among all classes, and farmland loses about -180 
hectares. Bare Surface did not lose any classes between 2011 and 2021. 
 

 
Figure 8: Gains and Losses between 2011 and 2021 Land use/land cover  

(Source: Fieldwork 2021) 
 
Predictions of Future Land Use and Land Cover Dynamics 
In this work, the Markov chain analysis was implemented over one period: 1998–2021. Thus, the 
land use area transfer matrix and transition probability matrix were obtained. From Tables 7 and 
8, the forest area will change in 2021 and 2030 from 1351.2600000 ha to 1199.1600000 ha. What 
this means is that if there is further reduction of forest by degradation, it will reduce to 152.1 
hectares in the 2030 projection. Table 9 shows various stages of prediction for 2030 land use and 
land cover change in the Oyimo forest reserve due to forest degradation. 
 

Table 7: Area covered by Oyimo forest 2021 land use land cover before Prediction 
Category Hectares Legend 
0 2411.1900000  Unclassified 
1 1351.2600000  FOREST 
2 1004.1300000  FARMLAND 
3 393.6600000  WATERBODY 
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4 603.2700000  SETTLEMENT 
5 78.4800000  BARESURFACE 

 
Table 8: Area covered by Oyimo forest land use land cover by 2030 Prediction 

Category Hectares Legend 
0 2411.1900000  Unclassified 
1 1199.1600000 FOREST 
2 1052.7300000  FARMLAND 
3 430.5600000  WATERBODY 
4 659.0700000  SETTLEMENT 
5 89.2800000  BARESURFACE 

 
Table 4.9: Oyimo Forest Probability change of classes from 2021 to 2030 

Probability Cl .1 Cl .2 Cl .3 Cl .4 Cl .5 
Class 1  0.6929 0.1616 0.0541 0.0838 0.0104 
Class 2  0.1424 0.4777 0.1981 0.1677 0.0140 
Class 3  0.2344 0.3844 0.3632 0.0147 0.0033 
Class 4  0.0355 0.3116 0.0317 0.5429 0.0783 
Class 5 0.0897 0.1915 0.0000 0.5613 0.1575 

 
Analysis of Forest Organic Carbon Stock of Oyimo Forest Reserve  
The result of forest organic carbon showed that there was significant forest loss from 2000 to 
2020, as observed in Table 9. Estimates show that forests are losing acreage every year between 
2001 and 2020. From 2000 to 2020, the forest loss was 1,858 ha; the carbon loss was 127,703 
tonnes of CO2e; and the total carbon emissions were 468,669 tonnes of CO2e. The highest forest 
loss was 419 ha in 2017, and the lowest loss during the years was 10 ha, which occurred in 2003 
(Salami et al., 2022). The highest carbon loss for this period was 27,660 tonnes, and the lowest 
carbon loss was 687 tonnes in 2017 and 2003. The lowest carbon emission during the year was 
2,521 and the highest was 101,513 (tonnes of CO2e); this happened in 2003 and 2017, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.10 Summary of Oyimo carbon loss due to degradation 
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Table 10 shows the change in biomass with restoration for above-ground biomass and below-
ground biomass. This analysis revealed the initial biomass, total biomass, and biomass change in 
the study area compared to pre-restoration levels. The Eucalyptus plantation had the highest 
level of biomass restoration among the others, with pre-restoration levels of 37883296 and a final 
total biomass of 48620525 (tonnes of CO2). Agroforestry had the least amount of biomass 

Area (hectares)
Percent of
total area

Total biomass
(tonnes of C):

Initial forest area: 59,413 99.4% 3,535,543
Initial non-forest land area: 345 0.6%

Water area: 0 0.0%

Missing data: 0 0.0%

Total: 59,758 100.0%

Baseline year: 2000

Final year: 2020

1,858

127,703

468,669

Year

Forest Loss
During Year

(ha)

Forest Cover
at End of Year

(ha)

Loss of Carbon
During Year

(tonnes of C)

Total Biomass
at End of Year
(tonnes of C)

Carbon Emissions 
During Year

(tonnes of CO2e)
2001 93 59,320 7,326 3,528,217 26,886
2002 65 59,255 4,890 3,523,327 17,945
2003 10 59,245 687 3,522,640 2,521
2004 32 59,213 2,442 3,520,198 8,962
2005 39 59,174 2,895 3,517,303 10,626
2006 27 59,147 2,051 3,515,252 7,526
2007 34 59,114 2,487 3,512,765 9,128
2008 50 59,064 3,780 3,508,985 13,873
2009 83 58,981 6,195 3,502,790 22,735
2010 75 58,907 5,546 3,497,243 20,355
2011 53 58,854 3,917 3,493,327 14,374
2012 30 58,824 2,133 3,491,194 7,827
2013 160 58,664 9,772 3,481,422 35,863
2014 109 58,554 7,286 3,474,136 26,738
2015 204 58,351 13,023 3,461,114 47,793
2016 102 58,249 6,978 3,454,136 25,609
2017 419 57,830 27,660 3,426,476 101,513
2018 183 57,647 12,506 3,413,970 45,896
2019 92 57,555 6,130 3,407,840 22,498
2020 0 57,555 0 3,407,840 0

Summary of carbon loss due to degradation*

Forest loss over period
(hectares):

Total carbon emissions over period
(tonnes of CO2e):

Carbon loss by year*

Loss of carbon over period
(tonnes of C)

Baseline land cover

Land cover change summary
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restoration, with pre-restoration levels of 3748068 and a total biomass of 14485297 (tonnes 
CO2e). 
 

Table 10: Change in biomass of above and below ground in Oyimo forest 

 
 
Figures 9, 10, and 11 show the results of soil productivity state degradation, soil productivity 
performance degradation, and soil productivity trajectory degradation, respectively. The output 
soil productivity state degradation map generated in Figure 9 is sliced into four density classes 
and their color ramp: area with no data, improvement, stable, and degradation. Areas with no 
data mean no information has been acquired from these areas. Improvement areas mean there is 
recovery from degradation in the area. In stable areas, that is, degradation has not taken place in 
these areas, and degradation area indicates the area is actually degraded. For soil productivity 
performance degradation output, the three classes are: no data, no degradation, that is, the areas 
have never experienced degradation. The degradation area shows there is significant 
degradation, as shown in Figure 10. Productivity trajectory degradation shows four classes from 
map output in figure 11, which include: no data; degradation (P<0.05), which indicates there is 
significant degradation; stability, which means degradation has not taken place at all; and 
improvement (P<0.05), which means there is significant improvement in some degraded areas. 
 

Value Units
Total area of polygon: 59,758 hectares

Time since initiation of restoration: 20 years
Initial biomass: 10,737,229 tonnes CO2e

Restoration approach

Change in biomass compared 
to pre-restoration levels

(tonnes CO2e)
Final total biomass

(tonnes CO2e)
Natural regeneration 10,228,039 20,965,269

Agroforestry 3,748,068 14,485,298
Teak plantation 25,854,827 36,592,056

Eucalyptus plantation 37,883,296 48,620,525
Oak plantation 11,167,998 21,905,227

Other broadleaf plantation 19,321,640 30,058,869
Pine plantation 14,241,579 24,978,808

Conifer plantation 15,362,000 26,099,230

Potential carbon removals from restoration summary table

Change in biomass with restoration
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Figure 9: Soil productivity state degradation of Oyimo forest 

 

 
Figure 10: Soil productivity performance degradation of Oyimo forest 
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Figure 11: Soil productivity trajectory degradation of Oyimo forest 

 
Table 11 shows the percentages and areas covered by soil productivity: degraded area, stable 
area, and improvement area. It is well known that organic matter is a key component of soil that 
affects its physical, chemical, and biological properties, contributing greatly to its proper 
functioning, on which human societies depend. Benefits of soil organic matter (SOM) include 
improvement of soil quality through increased retention of water and nutrients, resulting in 
greater productivity of plants in natural environments and agricultural settings. SOM improves 
soil structure and reduces erosion, leading to improved water quality in groundwater and surface 
waters and, ultimately, increased food security and decreased negative impacts on ecosystems. 
 

Table 11: Summary table of soil organic carbon land use cover of Oyimo forest reserve 
Summary of SDG 15.3.1 Indicator 
Area (hectares) Percent of total land area 
Total land area: 59,758 100.00% 
Land area improved: 11,978.02184 20.045% 
Land area stable: 29,032.919 48.584% 
Land area degraded: 18,727.849 31.34% 
Land area with no data: 19.21016 0.031% 

 
Analysis of Relationship Between the Variables 
Figures 12 and 13 showed the relationship between carbon emissions versus forest loss and 
carbon loss versus forest loss. It shows a positive correlation: as more forest is lost, the greater 
the increase in carbon emissions to the atmosphere, and the more the forest is lost, the more 
useful the carbon loss to the surrounding area. These correlation analyses describe the strength 
of an association between the two variables in figures 12 and 13 and are completely symmetrical; 
the correlation between carbon emission and loss of forest is the same as the correlation between 
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loss of organic carbon and loss of forest. Although the first one, r2, was 0.8506 and the latter was 
0.9959, which was highly correlated, 
 

 
Figure 12: Relationship between Carbon Emission and Forest loss 

 

 
Figure 13: Relationship between Carbon loss and Forest loss 

 
DISCUSSION 

The total land use land cover (LULC) for the forest reserve was 59,758 ha. It was found that LULC 
for the forest between 1998, 2011, and 2021 varied among the various land cover types identified. 
LULC increased from 1999 to 2021 for bare surface area, settlement area, and areas covered by 
water. On the other hand, areas covered by cropland and forest decreased (Belay & Mengistu, 
2019). What this mean is that there was loss of forest and cropland to settlement area, water, and 
bare surface area. Some croplands and forests were cleared for dwelling houses and thus changed 
into settlements. In the same vein, from 2011 to 2021, the forest class gained about 2% of other 
land as a result of replanting trees by the Ondo State Government programme. 
 
According to Abate (2011), an important aspect of change detection is to determine what is 
actually changing to what category of land use land cover type (i.e., which LULC type is changed 
to the other type of LULC class). Forest cover experienced more varied changes than any other 
land cover type in the Oyimo Forest Reserve. Some of the areas covered by forest became bare 
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surfaces through bush burning and construction activities. Parts of the forest were also cleared 
for housing projects, hence the change to a settlement area with an area of hectares (ha). Parts 
of the forest very close to water bodies were covered by water, including wetland. This was due 
to the advancement of these water bodies due to erosion and inundation. 
 
The prediction identified the extent to which the land area has the propensity and the right criteria 
to be altered. While the prediction created only a single realisation of the future LULC status, the 
prediction was a comprehensive assessment of change potential. This is why the output detected 
areas with varying degrees of vulnerability instead of identifying what and how much of the LULC 
area would be changed. From the modelled output, it is evident that most of the southern portion 
of the Oyimo forest reserve is highly vulnerable to transition under the current set of driver 
variables and identified individual transitions from one type to another. This is reasonable as this 
part of Oyimo has a large area of settlement and bare surface, which has exhibited the most 
significant depletion during the study period. Reasons for this vulnerability may be attributed to 
the recent intensified logging activity in this area along with land use change derived from 
agricultural and farming activities. The result of forest organic carbon showed that there was 
forest and carbon loss during this period. Converting the natural vegetation to agricultural land is 
likely to change the radiation balance of the given unit of area. In principle, the albedo increases 
as land is without vegetation for at least part of the year, causing more solar energy to reflect back 
into space. Other environmental impacts include the decrease in soil water holding capacity. On 
the other hand, it shows that soil productivity degraded areas, stable areas, and improvement 
areas where the effort of humans was felt both positively and negatively. It is also well known that 
organic matter is a key component of soil that affects its physical, chemical, and biological 
properties, contributing greatly to the proper functioning on which human societies depend. 
Benefits of soil organic matter (SOM) include improvement of soil quality through increased 
retention of water and nutrients, resulting in greater productivity of plants in natural 
environments and agricultural settings. 
 
In this correlation analysis, the magnitude of the correlation coefficient indicates the strength of 
the relationship. However, the correlation coefficients R2 = 0.9959 and 0.8506 are strong enough 
for this study to make a generalisation about the forest degradation of the surrounding area. The 
positive correlation in this present study means that when forest loss values increase, emissions 
of carbon dioxide increase. And an increase in forest loss values is also reflected in a decrease in 
carbon pull. This finding is also consistent with a study conducted by Kundu et al. (2017). 
 

DEVELOPMENT OF APPLICABLE GUIDELINES 
Sustainable forest management is essential for reducing the vulnerability of forests to climate 
change. There is no universally applicable measure for adapting forests to climate change. Forest 
managers should, therefore, have sufficient flexibility to deploy the adaptation measures most 
appropriate for their local situations. Flexible approaches to policy design are needed that are 
sensitive to context and do not rely on a single, one-size-fits-all mechanism. New modes of 
governance are required that enable meaningful stakeholder participation, provide secure land 
tenure and forest user rights, and provide sufficient financial incentives. 
 
More research is required to reduce current uncertainties about the impacts of climate change on 
forests and people and to improve knowledge about management and policy measures for 
adaptation. Nevertheless, despite the limitations of current knowledge, climate change is 
progressing too quickly to postpone adaptation action pending the outcomes of future studies. A 
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broad suite of agro-ecology practices can be used to increase carbon in the soil, including 
agroforestry, fallows (resting soil for a year or more), and sustainable pasture management 
through managed herd mobility. 
 

CONCLUSION 
It was concluded that despite many factors, such as the availability of imagery for specific times 
of the year and the availability of recent land use land cover maps, that created hurdles in finding 
change in the study area. The present study proved very effective in fulfilling the objectives that 
were set for the study. The study rendered the following findings: 
 
The area that is covered by forests first of all decreased and gradually increased. This can be 
attributed to the increase in planting more trees as directed by the Ondo State Government. It 
was noted that the increase in forest is almost entirely part of the study area. This is because of 
the availability of cultivable land in those parts of the study area. It was noted that settlement 
area increased the most in terms of its proportion to total area. This can be attributed to the 
increase in agricultural products, which in turn increase economic activities and ultimately human 
settlements and population in the study area. 
 
The bare surfaces in the study area increased a little bit. This is because the area that was once 
occupied by the bare surfaces is now covered by vegetation and human settlements. Water 
bodies in the study area have increased at a very high speed and have decreased by only 0.8% in 
around 21 years. This is because the area has been experiencing dry spells in recent times. Thus, 
on the basis of the results rendered by this study, it reveals that the geographic information 
system is one of the best methods available today for identifying and measuring changes in land 
use and land cover in a specific area with remote sensing (RS). In order to address particular 
problems like carbon loss, habitat degradation, and soil productivity, as well as to propose 
pathways for improving forest quality, remote sensing and GIS can be used as space 
quantification tools for forest conservation. 
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