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Abstract: 
Most farmlands in Southeastern Nigeria are associated with low organic matter content 
and are prone to soil erosion and nutrient loses due to runoffs from undulating soil 
surfaces. This consequently limits the capacity of these farmlands to produce abundant 
food. The present study investigated the effect of slope position on soil organic carbon 
(SOC), carbon stock and selected fertility indices of lowland rice fields in Ebonyi State, 
Nigeria. This study was conducted in four lowland-rice fields/location in Ishiagu, Ebonyi 
State, Nigeria. In each location, three slope positions (upper slope, middle slope, and 
lower slope) were identified. Topsoil samples (0-15 cm) were collected in 
quadruplicates from each slope position for soil chemical analyses. Results showed 
significant differences in the soil physicochemical properties across slope positions and 
locations. The middle slopes had higher (p < 0.05) pH, cation exchange capacity (CEC), 
and total nitrogen than the upper and lower slopes. Carbon stock varied from 4.22-13.0 
t C/ha across slope position but was insignificant across locations. Upper slopes had 
higher (11.4 g/kg) SOC than lower slopes (9.68 g/kg). The study locations had low SOC, 
CEC and soil nutrients; an indication of soil erosion impact in that area. The results of 
study reveal that organic amendment application is needed to build-up the SOC, which 
is crucial to preventing soil erosion, nutrient losses, as well as enhancing crop 
productivity and improving the overall soil health. 
 
Keywords: Carbon sequestration, Farming systems, Food security, Landscapes, Soil 
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INTRODUCTION 

Ebonyi state, Nigeria, is renowned for its rice farming. Rice production in Ebonyi State depends 
on rain-fed conditions, which is susceptible to climate variabilities that affect yield performance. 
About 93% of cultivated land in sub-Saharan Africa depends on rain-fed agriculture (FAO (2002). 
This suggests that rain-fed agriculture plays a crucial role in food security and water availability. 
Kadigi et al. (2004); Wani et al. (2009); Nwite et al. (2015) opined that rain-fed agricultural lands 
vary on the amount and distribution of rainfall in an area. Rain-fed lowlands are typically faced 
with poor soil quality, drought/flood conditions, and as well as unsustainable management 
practices that negatively affect yields (Meertens et al., 1999; Devendra, 2016). Most farmlands in 
Ebonyi state are prone to soil erosion, which results to nutrient loses due to runoffs from the 
undulating soil surface. This has serious negative impact on rice growth and yield performance. 
Further, most farmers often cultivate without applying adequate agricultural inputs (such as NPK 
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fertilizers, manures or composts) to enhance soil nutrient or at least to restore soil nutrients lost 
to plant nutrient uptake and soil erosion. Such land use management practices negatively affect 
soil organic carbon, accelerate soil degradation, erosion of steep slopes (Gabiri et al., 2018) and 
have negative environmental effects (Wezel et al., 2007). This is because water movements erode 
unprotected slope surfaces and wash away soil nutrients, which are reallocated in the watershed 
(Dung et al., 2008; Pansak et al., 2008; Aung et al., 2013).  
 
Soil erosion is the single largest threat that has serious negative effect on the productivity and 
sustainability of inland valleys/lowland rice fields in southeastern Nigeria (Sullivan, 2004). Most 
rice fields in Ebonyi state are located on sloppy lands with varying degrees of elevation. Hence, 
sediment rich water flows into the paddy fields from upper paddy side and flow out through the 
lower paddy. The differences in slope position cause differential influence on soil properties and 
hydrological conditions (Hseu and Chen, 2000); Tsubo et al., 2006; Gabiri et al., 2018). This 
consequently affects crop yield and productivity due to uneven sediments distribution and spatial 
variability in soil fertility of downstream watershed (Gao et al., 2007; Mingzhou et al., 2007; Gabiri 
et al., 2018). Soil varies considerably from place to place, across landscapes, both vertically and 
horizontally (Wilding, 1985; Ezeaku and Eze, 2014). Bockheim (2005) opined those soils formed 
on the same parent material within an ecological zone are intricately linked and can exhibit 
considerable variations in soil properties. Mojiri et al. (2018) reported changes in soil properties 
and productivity along a toposequence. Slope positions vary heterogeneously in morphology 
(physiography), soil type, vegetation, and hydrology (Mbagwu, 1995; Teka et al., 2015). Variations 
in soil properties across landscapes affect crop productivity and yield due to anthropogenic and 
natural activities (Xiao et al., 2016), which affect soil organic matter and nutrient reserves (Ezeaku 
and Eze, 2014; Rallos et al., 2017; Gabiri et al., 2018).  Rossiter (1994) emphasized the importance 
of topographic position in land evaluation in predicting land performances. However, the effect 
of slope position on carbon stock and soil fertility attributes under intensive rice cropping in 
Ebonyi state have not received much research attention. This study aimed at evaluating changes 
in soil carbon stock and some soil physicochemical properties of a derived savanna as affected by 
slope position in lowland rice fields of Ebonyi state.  
 

MATERIALS AND METHODS 
Study Location  
The study was conducted in four lowland rice fields/locations (Amaeze, Ovumte, Federal College 
of Agriculture Ishiagu [FCAI] and Fallow, at Ishiagu) in Ebonyi atate, Southeastern Nigeria. A split-
plot factorial arranged in randomized complete block design (RCBD) was used for this study. The 
main plots were slope positions while locations were the sub-plots. The study area, a derived 
savanna zone, is located between latitude 5° 55´ N and 6° 00´ N and longitude 7° 30´ E and 7° 35´ 
E, has a low-lying and undulating relief (Ezeh and Chukwu (2011) and a bimodal pattern of rainfall 
pattern. The annual rainfall ranges from 1250 mm to 1500 mm with a mean annual temperature 
of about 27°C to 28°C. The relative humidity is 80% during rainy season and 65% in the dry season 
(ODNRI, 1989). The area is characterized by rampant flooding and water logging due to poor 
drainage which is caused by an impervious layer, high soil bulk density and crusting (Nwite et al., 
2014; FDALR, 1985). Flooding occurs at the peak of rainy season (July and October) and it covers 
the basins and floodplains around the middle and lower river and stream courses (Nwite et al., 
2014). The major land uses include rice farming mainly during the raining season, citrus and oil 
palm plantations, multiple (annual) cropping of other arable crops and vegetables during the off-
peak rainy reasons.   
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Soil Sample Collection 
In each study location, three slope positions (upper slope, middle slope, and lower slope) were 
identified. Topsoil samples (0-15 cm) were collected in quadruplicates from each slope position 
for soil chemical analyses after being were air-dried, crushed and sieved with a 2 mm sieve. 
Undisturbed soil samples were also collected with the aid of cylindrical (5×5 cm) cores from each 
slope position for soil bulk density determination.  
 
Laboratory Methods 
Particle size distribution was determined by hydrometer method as described by Gee & Bauder 
(1986). Soil pH in H2O and KCl was determined using McLean (1982) method. Soil organic carbon 
(SOC) was determined by Walkley and Black method as described by Nelson and Sommers 
(1996). Total nitrogen was determined by semi-micro Kjeldahl digestion method using sulphuric 
acid and CuSO4 and Na2SO4 catalyst mixture (Bremner and Mulvancy, 1982). Cation exchange 
capacity was determined using Rhoades (1982) method. For bulk density (BD) determination, 
core soil samples were collected and allowed to drain freely for 24 hours, oven dried and 
thereafter calculated thus: Bulk density (g/cm3) was determined as described by Blake and Hartge 
(1986) method.  

Bulk density =
Mass of dry soil (g) 

Volumn of soil (cm3) 
 

 
Carbon stock (t C/ha) was calculated using the equation: 
 

Carbon stock =
Carbon x soil bulk density x area x soil depth

100
 

 
DATA ANALYSIS 

Data obtained was subjected analysis of variance (ANOVA) using GenStat 3 7.2 Edition. 
Treatment means were separated and compared using Least Significant Difference (LSD) and all 
inferences were made at 5% probability level. Slope positions and locations were subjected to 
simple linear regressions to investigate their relationship with SOC stock. 
 

RESULTS AND DISCUSSION 
Particle Size Distribution Across Slope Positions and Locations in Lowland Rice Fields  
Results of the particle size distribution show that fine sand varied from 3% to 53%; clay content 
ranged from 9% to 53%, while the silt content ranged from 19% to 47% (Table 1). At the middle 
slope, Ovumte had the highest (47%) silt content while Fallow had the highest (53%) clay content 
at the upper and lower slopes.  
 
The results show that Amaeze, Ovumte, FCAI and Fallow were composed of clay loam, loam, 
sandy loam and sandy clay respectively at the upper slope position. However, at the middle slope 
position, Amaeze and Ovumte were composed of clay loam while FCAI and Fallow were of sandy 
loam and clay textural classes respectively. At lower slope position, Amaeze and Fallow were of 
clay textural class while Ovumte and FCAI had clay loam and sandy loam textural classes, 
respectively. Soils of the study locations were predominantly gravelly sandy loam and clay loam 
texture. This is due to the sandy shales, with fine, grained micaceous sandstones and mudstones 
that characterized the soils of this area. Study has shown that the texture of any soil type is due 
to its parent material (Igwe et al., 1999).  
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Table 1: Selected physical properties of the soils of Ishiagu lowland rain-fed rice fields 
Locations Slope positions 

 Upper Slope 

 Textural class % Clay % Silt % Fine sand % Coarse sand 

Amaeze Clay 33 33 25 9.0 

Ovumte Loam 19 45 35 1.0 

FCAI Sandy Loam 9 19 35 37 

Fallow Sandy Clay 53 43 3 1.0 

 Middle Slope 

Amaeze CL 29 33 29 9.0 

Ovumte CL 29 47 23 1.0 

FCAI Sandy Clay Loam 20 23 53 4.0 

Fallow Clay 49 33 17 1.0 

 Lower Slope 

Amaeze Clay 43 33 21 3.0 

Ovumte Clay Loam 29 37 33 1.0 

FCAI Sandy Loam 11 25 32 32 

Fallow Clay 53 29 17 1.0 
FCAI = Federal College of Agriculture Ishiagu 

 
Effect of Slope Positions and Locations on Carbon Stock  
There were differences in carbon stock across slope positions and locations (Table 2). The highest 
(9.57 t C/ha) mean carbon stock was obtained in the upper slope positions. Across upper slope, 
Ovumte had the highest (p < 0.05) carbon stock while Fallow had the least carbon stock (Table 2). 
Although no significant changes in carbon stock were observed across slope positions, the 
significant variations in carbon stock across locations, suggests that the land use types and soil 
management practices employed by farmers contributed to varied carbon stock obtained. 
Wanshnong et al. (2013) reported that alterations in land use can have negative environmental 
impact such as (accelerated soil degradation due to erosion) which can result organic carbon loss 
in steep slopes.  
 

Table 2: Influence of slope positions and locations on the soil carbon stock 
Slope positions LOCATIONS Mean  

Amaeze Fallow FCAI Ovumte 

                                   Carbon stock (t C/ha) 
 Upper slope 11.8 6.21 7.32 13.0 9.57 

Middle slope 6.50 6.94 13.5 8.43 8.83 

Lower slope 4.22 12.4 7.80 6.72 7.78 

Mean  7.50 8.50 9.53 9.38 8.73 

LSD (0.05) slope positions                                              NS 

LSD (0.05) locations                                                       2.045 

LSD (0.05) slope positions x locations                           2.952 

FCAI = Federal College of Agriculture Ishiagu; LSD = Least significant difference 

 
Irrespective of location, soil C stock correlated positively (R² = 0.9901*, Figure 1) with slope 
positions. It therefore suggests that the high carbon sequestration recorded at upper slopes than 
lower slopes (Table 2, Figure 1) could be attributed to the improved system of rice farming, sawah 
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technology, that is adopted by smallholder farmers in Amaeze and Oveumte locations. Sawah 
rice farming technology refers to levelled rice field enclosed by bunds having inlets and outlets for 
irrigation and drainage (Nwite et al., 2016) with the aim of efficient controlled water supply and 
its utilization within the field using bunds and structural embankments.  
 

 
Figure 1: Relationship between slope positions and carbon stock (t C ha-1) 

 
Influence of Slope Position on Soil Organic Carbon, Ph, Total Nitrogen and Cation Exchange 
Capacity 
There are significant (p < 0.05) variations in the soil organic carbon (SOC) across slope positions 
and locations (Table 3). For Amaeze and Ovumte, upper slope position recorded higher (p < 0.05) 
SOC, while the lower slope position had the lest (p < 0.05) SOC. The SOC recorded for Fallow was 
higher (p <0.05) at lower slope than at upper slope position. The high SOC associated with lower 
slope position for Fallow can be attributed to cumulative impact of runoff, which eroded the upper 
slope and deposited the eroded sediments at the valley bottoms.  
 
This is because, the runoff process may have been ongoing at the time the location was under 
cultivation till time the location was fallowed. Overall, FCAI gave the highest (12.4 g/kg) mean 
SOC while Fallow lowland gave the lowest mean SOC (9.33 g/kg). The low mean SOC obtained 
from Fallow relative to those of Amaeze, Ovumte and FCAI is due to annual bush burning practice 
by the villagers.  
 
Slope positions and locations interaction significantly (p <0.05) influenced SOC (Table 3). This 
present result corroborates the study by Wanshnong et al. (2013) who found high SOC 
concentration at the top slope. According to Laurance et al. (1999); Porder et al. (2005); Nardoto 
et al. (2008), tropical lowlands display notable heterogeneity in nutrient cycling and nutrient 
constraints on ecosystem processes vary from local to regional scales within humid lowland 
forests (Kaspari et al., 2008; Townsend et al., 2011).  
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Table 3: Influence of slope positions and locations on the soil organic carbon, soil pH, total 
nitrogen and cation exchange capacity in lowland rain-fed rice fields 

Slope positions                               LOCATIONS  Mean  

Amaeze Fallow FCAI Ovumte 

Soil organic carbon (g/kg) 

Upper slope 15.4 7.47 9.51 13.4 11.4 

Middle slope 8.49 6.83 17.4 10.3 10.8 

Lower slope 6.5 13.7 10.2 8.31 9.68 

Mean  10.1 9.33 12.4 10.9 10.6 

LSD (0.05) slope positions 0.594 

LSD (0.05) locations 0.644 

LSD (0.05) slope positions x locations                               1.052 

Soil pH 

Upper slope 5.3 5.0 5.0 5.0 5.1 

Middle slope 5.0 5.1 5.2 5.0 5.1 

Lower slope 5.1 4.8 5.0 4.7 4.9 

Mean  5.13 4.94 5.08 4.88 5.01 

LSD (0.05) slope positions                                                 0. 065 

LSD (0.05) locations                                                           0.067 

LSD (0.05) slope positions x locations                               0.110 

Total nitrogen (g/kg) 

Upper slope 1.31 0.79 1.06 0.92 1.02 

Middle slope 1.87 1.1 1.57 0.93 1.37 

Lower slope 1.19 1.07 1.24 2.1 1.4 

Mean  1.46 0.99 1.29 1.32 1.26 

LSD (0.05) slope positions                                                  0.156 

LSD (0.05) locations 0.176 

LSD (0.05) slope positions x locations                               0.285 

Cation exchange capacity (cmol/kg) 

Upper slope 22.2 10.7 14.6 19.5 17 

Middle slope 25.7 9.2 23.5 14 18.1 

Lower slope 12.5 14.8 20.1 11.3 14.7 

Mean  20.2 11.6 19.4 15 16.5 

LSD (0.05) slope positions 0.876 

LSD (0.05) locations 0.579 

LSD (0.05) slope positions x locations                               1.093 

FCAI = Federal College of Agriculture Ishiagu; LSD = Least significant difference 
 
Locations and slope positions interactions influenced SOC significantly. Differences in soil types 
(Table 1) and contrasting climatic conditions might contribute to the observed differences. Salako 
et al. (2006) reported no significant interaction effect between locations and slope positions on 
SOC. The results of the present study indicate that slope positions strongly affect C stabilization 
(Figure 1).   
 
Our finding corroborates the report by Hancock et al. (2010), who found a strong and significant 
relationship between SOC and slope position. Variations in soil properties along toposequences 
has been reported (Hattar et al., 2010, Umali et al., 2006; Negasa et al., 2017). Across slope 
positions and locations, the soil pH ranged from from 4.7 (Ovumte, lower slope) to 5.3 (Amaeze, 
upper slope). Overall, upper and middle slope positions had higher mean pH than lower slope 
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position (Table 3).  Across the location, Amaeze had the highest (p < 0.05) mean pH value (5.13) 
while Ovumte had the lowest mean pH value (4.88). The variations in soil pH is linked to different 
land use practice and land management systems undertaken in the study areas.  
 
The result corroborates the findings of Wilding (1985) and Ezeaku and Eze (2014), who reported 
that soil pH varies spatially within and across agriculture fields. Soil total nitrogen (TN) differ 
significantly (p < 0.05) across slope positions and locations (Table 3).  
 
Except for Ovumte, middle slopes were associated with higher TN concentration than lower slope 
and upper slope. Overall, the upper slopes had lower (p<0.05) TN relative to other slope positions.  
 
The significantly low TN associated with the upper slope can be attributed to the effect of runoff 
due to soil erosion which wash off soil nutrients and deposit eroded nutrients at watersheds (Aung 
et al., 2013; Dung et al., 2008, Pansak et al., 2008). Deposited sediments create patterns of spatial 
variability in soil fertility of downstream watershed (Gao et al., 2007; Mingzhou et al., 2007). 
Across the locations, Amaeze had highest (1.46) mean TN concentration while the fallow lowland 
had the lowest (0.99) TN concentration (Table 3).  
 
The low TN in fallow is due to denitrification process that resulted from frequent bush burning. 
This result agrees with the submission of Ayeni (2010) who reported that N volatilization and 
denitrification affect soil TN. The interactions of the slope positions and locations were found to 
significantly (p < 0.05) affect the soil TN concentration (Table 3). There were significantly (p < 0.05) 
variations in the cation exchange capacity (CEC) across slope positions (Table 3). 
 
The middle slope recorded the highest (18.10 cmol/kg) mean CEC while the lower slope had the 
lowest (14.7 cmol/kg) CEC. Across locations, Amaeze had the highest (20.2 cmol/kg) CEC followed 
by FCAI (19.4 cmol/kg) while the Fallow lowland had the lowest (11. 6 cmol/kg) CEC. Generally, 
the CEC in all these locations is within the range of moderate to low and high to low according to 
Landon (1991) and FAO (2006) standards respectively. The low CEC associated with the study 
locations suggests that the farmers do not apply adequate amount of organic manure to restoring 
the productivity the soil. Gachene et al. (2004) and Obalum et al. (2012) suggested that except 
gully cities, where urgent intervention may be needed, a cover cropping agronomic system can 
go a long way to conserving the “yet-to-be-degraded” soils. 

 
CONCLUSION 

Across the study locations, slope positions significantly affected the soil carbon stock due to the 
farming systems practiced by farmers in those locations. Significant differences in the chemical 
properties along slope positions (upper, middle and lower) were also observed. Soil pH and CEC 
were higher at the middle slope position; TN was significantly higher at lower slope position while 
SOC was significantly higher at upper slope position.  
 
Overall, the study locations were associated with low SOC, CEC and soil nutrients. This suggests 
that the farmers do not apply sufficient amount of organic amendment, which is crucial to 
preventing soil erosion and nutrient losses, as well as enhancing crop productivity and improving 
the overall soil health. 
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