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Abstract: 
Maximal quantum correlations of unity do not violate the CSHS-Bell inequalities 
because the remaining two correlations vanish. The probability of coincident detections 
should not be confused with the correlation of mixed states. The theoretical 
requirements for implementing the quantum nonlocality theory are not present in the 
experimental configurations purporting to prove Bohr’s or Bell’s nonlocality because of 
the quantum Rayleigh scattering of single photons. By means of a normalization factor 
corresponding to the total number of initiated events, the detection probabilities 
obtained experimentally are too small to enable any violation of a Bell inequality. 
Correlations between independent states of qubits can easily outperform those 
calculated with entangled photons. Additionally, the quantum joint probability for a 
Bell state can be factorized enabling a local detection of the alleged quantum 
nonlocality, if it existed. 
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INTRODUCTION 
Quantum correlations between separate measurements [1-2] have been touted as a 
technological resource for the practical implementation of quantum computers. The benchmark 
for quantum correlations takes the form of Bell-inequalities which should be violated only by 
quantum probabilities calculated as the expectation values of a product of operators in the 
context of wavefunctions describing polarization-entangled single photons. 
 
The effect of quantum nonlocality is meant to synchronize the detections recorded at the two 
locations A and B for polarization-entangled states of photons. In the caption to Fig.1 of [1], on 
its second page, one reads: “…if both polarizers area aligned along the same direction (a=b), then 
the results of A and B will be either (+1; +1) or (-1; -1) but never (+1; -1) or (-1; +1.); this is a total 
correlation as can be determined by measuring the four rates with the fourfold detection circuit.” 
Yet, the quantum correlation is supposed to take place at the level of each pair of entangled 
photons rather than between averaged values of the two distributions; but such an outcome has 
never been reported. The maximal, experimentally measured probability of coincident counts 
reported in the landmark experiments of refs. [3-4] is 2x10-4 (or 0.0002) which was achieved with 
highly non-entangled states and is indicative of the non-existence of the mythical Bohr’s 
nonlocality. 
 
Additionally, the Bell parameter 𝑆 = 〈𝑎0 𝑏0〉 + 〈𝑎0 𝑏1〉 + 〈𝑎1 𝑏0〉 − 〈𝑎1 𝑏1〉 of eq. (4) in [2] would 
actually vanish as 〈𝑎1 𝑏1〉 = 〈𝑎0 𝑏0〉 = −1 and 〈𝑎1 𝑏0〉 = 〈𝑎0 𝑏1〉 = 0 according to the 
expectation values [2, p. 422] of 〈𝑎𝑥 𝑏𝑦〉 = −�⃗� ∙ �⃗� , for detection settings �⃗�0;1 ∥ �⃗�0;1, and �⃗�0;1 ⊥

�⃗� 1;0 of the polarization states for coincident detections. Thus, 𝑆 = 0, failing to violate the CSHS 
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inequality despite involving the strongest quantum correlations. This fact should have rung alarm 
bells about the irrelevance of the Bell-type inequalities as an indicator of strong correlations 
between the same order elements of two sequences. This shortcoming will be elaborated on in 
this article.  
 
However, from an experimental perspective, the correlation probability of simultaneous 
detections  𝑝𝑐(𝑎, 𝑏) is evaluated from a third sequential distribution 𝑣𝐶(𝑎; 𝑏) calculated as the 
temporal vector or dot product of the two initial sequences 𝑣(𝑎, 𝑥) = {𝑎𝑚} and 𝑣(𝑏, 𝑦) = {𝑏𝑚} 
leading to  𝑝𝑐(𝑎, 𝑏) = (∑ 𝑎𝑚

𝑁
𝑚=1  𝑏𝑚)/𝑁 where 𝑎, 𝑏 = 0 𝑜𝑟 1 are assigned binary values for no-

detection or detection of an  
 

 
Figure 1: Schematic of one photon being randomly scattered inside a dielectric medium, 

while a group of identical photons propagates in a straight-line. 
 
event, respectively. For any ensemble of measurements, the values of the correlation or joint 
probability  𝑝𝑐(𝑎, 𝑏) will depend on the sequential orders of the two separate ensembles at 
locations A and B. Therefore, as the quantum formalism does not provide any information about 
those sequential orders, any artificial boundary such as Bell-inequalities are physically 
meaningless, because for the same values of the local probabilities,  𝑝𝐴(𝑎) 𝑎𝑛𝑑  𝑝𝐵( 𝑏), the 
higher values of  𝑝𝑐(𝑎, 𝑏) will lead to a violation of the Bell inequality in the classical regime. Bell 
inequalities can be easily violated with independent photons [5-7]. 
 
Equally, the experimental results of ref. [8] alleging propagation of single photons through the 
atmosphere over a distance of more than 100 km are physically impossible because of the 
quantum Rayleigh scattering [9] of single photons which will prevent synchronized detections. A 
physically meaningful explanation was presented in refs. [10-11] and can be summarized as 
follows. The spontaneously emitted photons in the nonlinear crystal undergo parametric 
amplification forming a group of identical photons. This group of photons can overcome the 
quantum Rayleigh scattering through quantum Rayleigh stimulated emission. This is illustrated 
in Figure 1 and detailed in refs. [10-11]. 
 
Additionally, a sub-section of ref. [2] headlined “More nonlocality with less entanglement” leads 
one to the anomaly of nonlocality. “Astonishingly, it turns out that in certain cases, and 
depending on which measure of nonlocality is adopted, less entanglement can lead to more 
nonlocality.” [2, p. 442]. “Remarkably, it turns out that this threshold efficiency can be lowered 
by considering partially entangled states. …. This astonishing result was the first demonstration 
that sometimes less entanglement leads to more nonlocality “[2, p. 464]. 
 
“Since it is expressed in terms of the probabilities for the possible measurement outcomes in an 
experiment, a Bell inequality is formally a constraint on the expected or average behavior of a 
local model. In an actual experimental test, however, the Bell expression is estimated only from 
a finite set of data and one must take into account the possibility of statistical deviations from 
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the average behaviour” [2, p. 466]. For a distinction between probability and frequency of 
occurrence, the reader is directed to ref. [12] 
 
It is claimed that “…quantum correlations cannot be reproduced using no-signaling theories 
which make more accurate predictions of individual properties compared to quantum theory” [2, 
p. 469]. Equally, “Quantum correlation is a fundamental aspect of quantum mechanics and serves 
as the crucial link between quantum and classical physics. When quantum correlations between 
subsystems for a system reach a certain threshold, the system is entangled, which has diverse 
applications in quantum information processing.” Nevertheless, experimental results of 
quantum-strong correlations have been achieved with independent, non-entangled photons [5-
6]. 
 
These statements will be disproved in Section 2 by identifying physical probabilities evaluated 
with independent photons that outperform the quantum correlations based on entangled 
photons. The complete derivation of the quantum joint probability in the context of the collapse 
upon a first measurement of the entangled state of photons is presented in Section 3 leading to 
a factorization of local probabilities, thereby enabling a local test of the quantum nonlocality 
without the need for an arbitrary Bell inequality. Further contradictions and omissions are listed 
in Section 4. 
  

PROBABILITIES OF INDEPENDENT PHOTONS EXCEEDING PROBABILITIES OF 
ENTANGLED PHOTONS 

Normalization With the Number of Initiated Events 
The quantum correlation function 𝐸𝑐(1; 1|𝛼; 𝛽) for detecting one photon at location A and its 
pair-photon at allocation B, is defined in terms of four probabilities between two orthonormal 
detection-settings at each of the two locations A and B, for eigenvalues +1 𝑜𝑟 − 1, respectively, 
of local settings 𝛼 𝑜𝑟 𝛼′ , and 𝛽 𝑜𝑟 𝛽′ leading to the linear combination of probabilities 𝑃𝑖𝑗  [8], 

[13]: 
 

𝐸𝑐(1; 1|𝛼; 𝛽) = 𝑃++(𝛼; 𝛽) +  𝑃−−(𝛼′; 𝛽′) − 𝑃+−(𝛼; 𝛽′) − 𝑃−+((𝛼′; 𝛽)           (1) 
 
where 𝛼′ = 𝛼 + 𝜋/2 and 𝛽′ = 𝛽 + 𝜋/2 . Fluctuations in the number of detections would give rise 
to a spread in the values of 𝑃𝑖𝑗  and 𝐸𝑐(1; 1|𝛼; 𝛽). This correlation function is normally linked to 

the polarimetric Stokes measurements or the quantum Pauli vector operators and has the same 
form in both the quantum and classical regimes [7], so that its use in the Clauser-Horne-Shimony-
Holt (CHSH) inequality cannot discriminate between quantum and classical outcomes.  
 
For the CHSH inequality, the correlation probability is 𝑃++(𝛼; 𝛽) = 𝑁++(𝛼; 𝛽)/ 𝑁𝑛𝑜𝑟𝑚 where 𝑁++ 
is the number of coincident counts of photons and 𝑁𝑛𝑜𝑟𝑚 is the number of all coincident 
detections for all four settings 𝑁𝑛𝑜𝑟𝑚 = 𝑁++(𝛼; 𝛽) + 𝑁−−(𝛼′; 𝛽′) + 𝑁+−(𝛼; 𝛽′) + 𝑁−+(𝛼′; 𝛽). 
However, this normalization is mathematical because the physical number 𝑁𝑛𝑜𝑟𝑚 = 𝑁𝑖𝑛 of 
initiated photon-pairs is very much larger as photons are lost between the source and the 
photodetectors, for various reasons, thereby throwing doubt about the real statistics. This 
normalization makes a violation of the CHSC impossible as 𝑁++/𝑁𝑖𝑛 ≪ 0.1.  
 
The Clauser-Horne (CH) inequality has arbitrary values for the two measurement settings, 
i.e., 𝛼 𝑎𝑛𝑑 𝛼′ as well as 𝛽 𝑎𝑛𝑑 𝛽′ are set separately. The CH inequality also contains correlations 
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between ‘1’s and ‘0’s, so that, in terms of binary-valued probabilities 𝑝 (1,1; 𝛼, 𝛽) and similar 
forms, [3-4], the inequality is written as: 
 

𝑝(1,1; 𝛼, 𝛽) − 𝑝(1,1; 𝛼′, 𝛽′) ≤ 𝑝(1,0; 𝛼, 𝛽′) + 𝑝(0,1; 𝛼′, 𝛽)                       (2) 
 
with the normalization factor 𝑁𝑖𝑛 of initiated events being used. But, as only one term of the four 
terms is measured in any given run, the linear combination would relate the maximal values on 
the left-hand side to the minimal values on the right-hand side. With such probabilities for all four 
terms, the opposite requirements of the inequality for the coincident detections of (1;1) on the 
left-hand side, and for only one-location detection (1;0) or (0;1) on the right-hand side, make a 
violation impossible, mathematically, unless arbitrary values are selected from various data sets. 
In this case, the inequality becomes physically meaningless. 
 
Linking Projective Measurements to The Theoretical Correlation Function 
Quantum correlations are evaluated as the expectation values of a product of operators [2], [13]. 

For the projective operators �̂�(𝛼) = |𝐻𝛼⟩ ⟨𝐻𝛼| 𝑎𝑛𝑑 �̂�(𝛽) = |𝐻𝛽⟩ ⟨𝐻𝛽| corresponding to the 

polarization filters with one detection setting at each of the two locations A and B, respectively, 
the probability of coincident detections has the form, cf. [2, eq. 13]: 
 

𝑝 (1,1; 𝛼, 𝛽) = |(⟨𝜓𝑖𝑛|�̂�(𝛼)) (�̂�(𝛽) |𝜓𝑖𝑛⟩)| = |⟨Φ𝛼|Φ𝛽⟩|                          (3) 

 

with |𝐻𝛼⟩ and |𝐻𝛽⟩ identifying the states of the polarization filters, and ⟨Φ𝛼| = ⟨𝜓𝑖𝑛|�̂�(𝛼) for the 

Hermitian conjugate state. For the polarization-entangled photons, the outcomes consist of the 
overlap between two state vectors rotated on the Poincaré sphere and are defined as the correlation 
function 𝐶(𝛼; 𝛽) between two (mixed) states; by contrast, experimentally, the probability of coincident 
detections is calculated from the sum of products of overlapping terms, i.e.,  𝑝𝑐(𝑎, 𝑏) =
(∑ 𝑎𝑚

𝑁
𝑚=1  𝑏𝑚)/𝑁 , as defined in the Introduction, and identifies the fraction of simultaneous 

detections at the level of each quantum event. This discrepancy is part of the disconnect between 
theory and measurement. 
 
For the basis states |𝐻⟩ 𝑎𝑛𝑑 |𝑉⟩ of the shared measurement Hilbert space, the projective 

amplitudes are ⟨𝐻𝛼|𝐻𝐴⟩ = 𝑐𝑜𝑠 𝛼, ⟨𝐻𝛼|𝑉𝐴⟩ = 𝑠𝑖𝑛 𝛼, ⟨𝐻𝛽|𝐻𝐵⟩ = 𝑐𝑜𝑠 𝛽 and ⟨𝐻𝛽|𝑉𝐵⟩ = 𝑠𝑖𝑛 𝛽. the 

correlation function 𝐶(𝛼; 𝛽) of magnitude |𝐶(𝛼; 𝛽)| =  𝑝 (1,1; 𝛼, 𝛽) between filter polarization 
states and for independent states of photons |𝜓𝑖𝑛⟩ becomes: 
 

𝐶(𝛼; 𝛽) = ⟨Φ𝛼|Φ𝛽⟩ = ⟨𝜓𝑖𝑛|𝐻𝛼⟩ ⟨𝐻𝛼|𝐻𝛽⟩⟨𝐻𝛽|𝜓𝑖𝑛⟩                                 (4𝑎) 

 

|𝜓𝑖𝑛⟩ = ( |𝐻⟩  + |𝑉⟩ )/ √2                                                                            (4𝑏) 
 

|𝐻𝛼⟩ = cos 𝛼 |𝐻⟩ + sin 𝛼  |𝑉⟩ ; |𝐻𝛽⟩ = cos 𝛽 |𝐻⟩  + sin 𝛽  |𝑉⟩            (4𝑐) 

 
𝐶(𝛼; 𝛽) =  0.5[𝑐𝑜𝑠 𝛼 + sin 𝛼] [𝑐𝑜𝑠(𝛼 − 𝛽)] [cos 𝛽 + 𝑠𝑖𝑛 𝛽] =  

=  0.5 cos(𝛼 − 𝛽)[cos(𝛼 − 𝛽) + sin(𝛼 + 𝛽)]                          (4𝑑) 
 
This correlation of eq. (4d) is composed of three terms. The projections of the input states onto 
the respective filters are given by the sum of the sine and cosine functions, while the term 
𝑐𝑜𝑠(𝛼 − 𝛽)  indicates the overlap between the two filters. The magnitude of this correlation 
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function or probability of coincident detections can reach a peak of unity for the symmetric case 
of 𝛼 = 𝛽 = 𝜋/4 𝑜𝑟 𝜋/4 ± 𝜋 , outperforming the coincidence values of 0.5 obtained with 
entangled states of photons as presented in Section 3. 
 

THE WAVE FUNCTION COLLAPSE LEADING TO FACTORIZATION OF THE QUANTUM 
JOINT PROBABILITY 

A rigorous derivation based on the formalism of wave function collapse of a maximally entangled 
state will provide a method to test the concept of quantum nonlocality. If no detection takes 

place at location A, the projective measurement at location B involves the operator Π̂(𝛽) =

|𝐻𝛽⟩ ⟨𝐻𝛽| acting on the initial state  

 

|𝜓𝐴𝐵⟩ = ( |𝐻𝐴⟩ |𝑉𝐵⟩ −  |𝑉𝐴⟩ |𝐻𝐵⟩)/√2                                                        (5) 
 
and resulting in the probability of detection 
 

𝑃𝛽 = ⟨𝜓𝐴𝐵|𝐼𝐴⨂|𝐻𝛽⟩ ⟨𝐻𝛽|⨂ 𝐼𝐴 | 𝜓𝐴𝐵⟩ = (𝑐𝑜𝑠2 𝛽 + 𝑠𝑖𝑛2 𝛽)/2 = 1/2              (6) 

 

after setting ⟨𝐻𝛽|𝐻𝐵⟩ = 𝑐𝑜𝑠 𝛽 and ⟨𝐻𝛽|𝑉𝐵⟩ = 𝑠𝑖𝑛 𝛽 for the projective amplitudes onto the 

polarization filter. Similarly, for the first detection at location A, i.e., 𝑃𝛼 = 1/2 . 
 

If a first detection takes place at location A involving the projective operator Π̂(𝛼) = |𝐻𝛼⟩ ⟨𝐻𝛼|, 
it will result in an intermediary state for the projective amplitudes ⟨𝐻𝛼|𝐻𝐴⟩ = 𝑐𝑜𝑠 𝛼 and 

⟨𝐻𝛼|𝑉𝐴⟩ = 𝑠𝑖𝑛 𝛼 , so that the reduced or collapsed wave function |𝜓𝐵|𝐴⟩ becomes: 

 

|𝜓𝐵|𝐴⟩ = |𝐻𝛼⟩ ⟨𝐻𝛼|⨂ 𝐼𝐵|𝜓𝐴𝐵⟩  =
1

√2
 (𝑐𝑜𝑠 𝛼 |𝑉𝐵⟩ − 𝑠𝑖𝑛 𝛼 |𝐻𝐵⟩) |𝐻𝛼⟩            (7) 

 

|𝜓𝐵⟩ =
|𝜓𝐵|𝐴⟩

√ℕ
=

|𝐻𝛼⟩〈𝐻𝛼|⨂𝐼𝐵|𝜓𝐴𝐵〉

√ℕ
                                                            (8) 

 
where |𝜓𝐵⟩ denotes the normalised wave function for the calculation of the detection probability 
at location B, conditional on a detection at location A. The normalization factor ℕ = 1/2 for the 

collapsed wave function |𝜓𝐵|𝐴⟩ corresponds to the probability of detection 𝑃𝛼  for the first 

measurement, and after substituting for |𝜓𝐵⟩ from eq. (8) we have: 
 

𝑃𝛼 = ⟨𝜓𝐴𝐵|𝐼𝐵⨂|𝐻𝛼⟩⟨𝐻𝛼|⨂ 𝐼𝐵|𝜓𝐴𝐵⟩ = |⟨𝐻𝛼|𝜓𝐴𝐵⟩|2 = ℕ ⟨𝜓𝐵|𝜓𝐵⟩ = 1/2       (9) 

 
Based on the normalized state |𝜓𝐵⟩, the probability of detection at location B following a 
detection at location A, becomes in this case, for a projective measurement: 
 

𝑃𝛽|𝛼 = ⟨𝜓𝐵|𝐻𝛽⟩ ⟨𝐻𝛽|𝜓𝐵⟩ = | 𝑐𝑜𝑠 𝛼  𝑠𝑖𝑛 𝛽 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽|2 =  𝑠𝑖𝑛2(𝛽 − 𝛼)   (10) 

 
This result which can be found in [13, Sec.19.5] implies that for 𝛽 − 𝛼 = ±𝜋/2, regardless of the 
values of 𝛽 𝑜𝑟 𝛼 , the local probability of detection could peak at unity. This theoretical outcome 
is easily testable experimentally for direct evidence of a quantum nonlocal effect influencing the 
second measurement after the wave function collapse. But this has never been done either 
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because of the quantum Rayleigh scattering [9] of a single-photon and/or the non-existence of 
such a nonlocal effect. The product of the local probabilities of eqs. (9) and (10) equals the 
expression of the joint probability 𝑃𝛼𝛽  for simultaneous detections at both locations A and B, that 

is: 
 

𝑃𝛼𝛽 = |⟨𝐻𝛽|⟨𝐻𝛼|
|𝜓𝐴𝐵⟩

√𝑃𝛼

|

2

𝑃𝛼 =  |⟨𝐻𝛽|𝜓𝐵⟩|
2

𝑃𝛼 = 𝑃𝛽|𝛼 𝑃𝛼                         (11𝑎) 

 

𝑃𝛼𝛽 = ⟨𝜓𝐴𝐵|𝐻𝛼⟩|𝐻𝛽⟩⨂⟨𝐻𝛽|⟨𝐻𝛼|𝜓𝐴𝐵⟩ = 0.5  𝑠𝑖𝑛2(𝛽 − 𝛼)                    (11𝑏)  

 
𝑃𝛼𝛽 =  𝑃𝛼  𝑃𝛽|𝛼  ≤ 𝑃𝛼 𝑃𝛽                                                                                  (11𝑐) 

 
after inserting from Eqs. (8) and (10) in the equality (11a). The equality (11b) provides a direct 
calculation of the joint probability, confirming the validity of the derivation. With the conditional 
probability of local detection 𝑃𝛽|𝛼  being, mathematically, lower than, or at best, equal to the local 

probability of detection 𝑃𝛽  in the absence of a first detection, i.e., 𝑃𝛽|𝛼 ≤ 𝑃𝛽, the formalism of 

wave function collapse gives rise to a factorization of local probabilities and imposes an upper 
bound on the quantum joint probability, in clear contradiction to the conventional assumption 
[13, p.538]. This formalism delivers average values of the ensembles rather than correlation 
between the sequential orders of the detections. The possibility of factorizing the quantum 
probability for joint events as in (11a) is identical to the classical case of joint probabilities with 
the second local probability being conditioned on a first detection. This strong similarity between 
the classical and quantum joint probabilities renders the local condition of separability [2], [13] 
irrelevant for the derivation of Bell inequalities.  
 

THE FLAWS OF THE QUANTUM NONLOCALITY INTERPRETATION OF EXPERIMENTS 
For the two polarized photons shown in the inset to Fig. 1 of [1] “quantum mechanics predicts 
that the polarization measurements performed at the two distant stations will be strongly 
correlated.” Yet, quantum-strong correlations can also be achieved with independent photons or 
classical systems [5-7]. 
  
Another quotation of interest from [1] is: “In what are now known as Bell’s inequalities, he showed 
that, for any local realist formalism, there exist limits on the predicted correlations.” Once again, 
as pointed out above, Bell inequalities can be violated with expectation values from independent 
and multi-photon states [5-7]. 
 
At least three critical elements have been ignored in the interpretations of experimental results 
alleging proof of quantum nonlocality: 1) the quantum Rayleigh scattering involving photon-
dipole interactions in a dielectric medium [7], [9], which prevents a single photon from 
propagating in a straight-line, thereby obstructing the synchronized detections of initially paired-
photons; 2) the unavoidable parametric amplification of the spontaneously emitted photons in 
the nonlinear crystal of the original source [7], [10-11]; and 3) the experimental evidence of 
quantum-strong correlations between polarization states or statistical ensembles of multi-
photon, independent states [5-6].  
  
The theoretical concept of photonic quantum nonlocality cannot be implemented physically 
because of the quantum Rayleigh scattering of single photons [9]. Landmark experiments [3-4] 
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reported that measured outcomes were fitted with quantum states possessing a dominant 
component of non-entangled photons, thereby contradicting their own claim of quantum 
nonlocality. With probabilities of photon detections lower than 0.001, the alleged quantum 
nonlocality cannot be classified as a resource for developing quantum computing devices, despite 
recent publicity.  
 
All the experimental evidence indicates the absence of a quantum effect between two 
simultaneously measured single and entangled photons because of the quantum Rayleigh 
scattering of single photons. The theoretical quantum joint probability for entangled photons is 
limited by an upper value of 0.5, whereas the correlation between independent qubits on the 
Poincaré sphere can exceed 0.5 as shown in Section 2. Equally, the classical correlation coefficient 
between two sequences of arbitrarily distributed binary values can be larger than 0.5, calculated 
as the sum of same order, overlapping, product components of '1' or '0'. The quantum reality of 
independent states of photons takes precedence over the quantum nonlocality of statistically 
mixed quantum states by delivering stronger quantum correlations as explained in Section 2. The 
mixed states are time- and space independent and can be used at anytime, anywhere and in any 
context regardless of the physical context and circumstances. Thus, discarding critically 
informative aspects of the photonic systems being probed leads to the need for ‘counter-
intuitive’ explanations such as the quantum nonlocality phenomenon.  
 
Consequently, the physical reality as promoted by Einstein prevails over the mythical quantum 
nonlocality of Bohr, if only because a single photon will be scattered about in a dielectric medium 
by the quantum Rayleigh scattering.  
 

CONCLUSIONS 
A long series of physical errors, some of which stemming from disregard for scientific 
methodology, have been covered up over the last six decades. An arbitrarily defined probability 
threshold which, allegedly, can only be violated by quantum correlations was repeatedly proven 
to be physically incorrect. Experimental outcomes purporting to prove the role of polarization-
entangled photons were, in fact, modelled with a high level of non-entangled states. The 
formalism of the wave function collapse of the entangled states, when fully analysed, leads to 
the factorization of the quantum probability of joint detections, thereby enabling a local 
verification of the claimed quantum nonlocality, if it existed. No explanation is provided in ref. 
[14] about the physically meaningful process of Rayleigh scattering of single photons which 
prevents synchronized detections of the original pair of entangled photons. The absence of such 
experimental evidence is consistent with the analysis based on the concept of wave function 
collapse leading to the factorization of the quantum joint probability. This, in turn, should enable 
a local determination of the alleged quantum nonlocality, which has never been done. Therefore, 
Gisin’s statement [14] that “…a violation of a Bell inequality proves that no future theory can 
satisfy the locality condition” is physically unsubstantiated given the evidence to the contrary 
presented in Sections 2 and 3 above, and references [5-6]. Taking into consideration all the flaws 
and shortcomings of the theoretical claims and experimental outcomes, it is obvious to any 
impartial physicist that no evidence of a nonlocal quantum effect can be identified. The 2022 
Nobel Prize Committee intentionally disregarded the various rebuttals and refutations of the 
concept of quantum nonlocality in line with the editorial policy of journals such as Physical Review 
Letters and Physical Review A which knock back without consideration any well-substantiated 
article outlining the physical reality of Einstein. For further details see ref. [15]. 
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