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Abstract: 
The research is concerned with the presentation of a tutorial extract on the Graeffe’s 
Root-finding scheme derivation and application for the solution of third-degree 
Polynomial of the form, f(x) = 0. Thereafter, we tested the efficiency of our proposed 
scheme by applying it to a range of Third-Degree polynomial problems in literature 
reviewed. The outcome of the comparison of the roots generated by the Graeffe’s root-
finding scheme to their respective exact solution showed that the scheme gave a better 
approximation to the exact solution at every fourth iteration. Thus, the proposed 
scheme in this research can be said to be another better suitable numerical approach 
for the solution of third-degree polynomial that their exact solutions are difficult to 
arrive at. The procedures for the scheme derivation can be easily followed for the 
solution of other higher degree auxiliary equations. 
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INTRODUCTION 

Most differential equations’ auxiliary polynomials and some other polynomials are indeed tricky 
to address in the world of science and engineering today (especially those above second degrees 
and those that cannot be easily factorised). Thus, various methods that can suit the need of 
scientists have been evolving. Historically, over some decades ago till date, the exact solution to 
such polynomials of degree three or anyone higher, has been solely tied to trial-and-error (or 
guess) method. But this trial-and-error approach however, appears almost not scientifically 
inclined. Hence, in order to salvage this situation, a numerical method proposed by Graeffe 
Dandlin becomes unavoidable since it provides all the n-number of roots to any polynomial of 
degree n. According to [2], the Graeffe’s Numerical Method of finding the roots of polynomials is 
one among many methods recommended for the numerical solution of polynomial equations. 
This Graeffe root finding method gives all the roots approximations from the first to the last 
iteration [8]. It is one of the direct roots-finding-methods in literature. 
 
One of the motivations for this research emanates from the fact that in the field of engineering 
and computational sciences, most differential equations cannot be successfully solved without 
firstly resolving their reduced auxiliary equations via the help of any root-finding algorithms. The 
situation becomes even worst when great scientists are handicapped when auxiliary equations 
cannot be easily factorised via trial-and-error approach. Hence the need for escape route just as 
this study has proposed cannot be avoided.  
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Similarly, this method does not require any initial guesses for roots. Going down the memory lane, 
the Graeffe root finding method was invented independently by Graeffe Dandlin and 
Lobachevesky in the 19th and 20th century [6,3]. It was seen to be the most popular numerical 
method for finding roots of polynomials; [7,4,5]. In view of the fact that most numerical methods 
have limitations and shortcomings, the limitations of the Graeffe’s root finding algorithm are 
manageable and even avoided in an efficient implementation, according to [6]. Additionally, the 
beauty of the Graeffe’s root finding algorithm was likewise demonstrated by [11] for only second-
degree polynomials and in [13]. But the third-degree polynomials have not been widely explored 
in the directions recommended by this study. 
 
However, despite the good sides of the Graeffe’s algorithm, according to [1], special cases in 
Graeffe's method exists such that, if maximum power of polynomial is odd and after squaring, if 
any coefficient of the function except the constant term, is zero, the method does not give exact 
roots. An example of such problem that belongs to this category is: if f(x) = x3-1= 0. 
 

DERIVATION OF THE GRAEFFE’S ROOTS SQUARING NUMERICAL SCHEME FOR THE 
SOLUTION OF THIRD ORDER POLYNOMIAL OF THE FORM, 0)( =xf  

In order to derive the numerical scheme for this study, some numbers of iterations are needed. 
The higher the number of iterations made for a certain problem, the better the numerical result 
of the roots of the polynomials in comparison with the exact solution. Generally, according to [1], 
a minimum of four iterations is almost sufficient to arriving at a better approximation to the exact 
solution. Therefore, in this numerical scheme derivation subsection, we intend to stop after the 
fourth iteration. The following are the iterations for the complete scheme/algorithm presented in 
equations (17), (18) and (19).   

 
First Iteration 
Recalling from the general problem of the form, (1)  
 

 0)( =xf          (1) 

 
Now, from equation (1), if the polynomial is of degree 2, the roots will definitely correspond to the 
roots obtainable using quadratic formula:  
 

a

acbb
x

2

42 −−
= :          (2) 

 
Since our interest is for third order polynomials, we considered the polynomial whose highest 
power/degree is odd as shown in equation (3) below. 
 

2212212)( −−+ +++= nnnn dxcxbxaxxf       (3) 
 
Likewise, setting f(x)=0 in equation (3) above gives; 
 

02212212 =+++ −−+ nnnn dxcxbxax        (4) 
 

But from equation (4), assuming that the roots are real and distinct, we separate the even power 
terms from those of odd power. Thus putting ,1=n in the above equation (4), we have; 
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023 =+++ dcxbxax         (5) 
 
Separating the even power terms from those of the odd power gives; 
 

)()( 23 dbxcxax −−=+  
 

Squaring both sides of the above gives; 
 

2223 )()( dbxcxax −−=+  

 

))(())(( 2233 dbxdbxcxaxcxax −−−−=++  

 
22242224462 dbdxbdxxbxcacxacxxa +++=+++  

 
224222462 22 dbdxxbxcacxxa ++=++  

 
Collecting the like terms 
 

022 224222462 =−−−++ dbdxxbxcacxxa  
 

022 222242462 =−−+−+ dbdxxcxbacxxa      (6) 
 

Putting yx =2
in equation (6), gives; 

 

022 2222232 =−−+−+ dbdyycybacyya  

 

0)2()2( 2222232 =−−+−+ dybdycybacyya  

 
Dividing through by 2a in the above, we have; 
 

0
)2()2(

2

2

2

2

2

222
3 =−

−
+

−
+

a

d

a

ybdc

a

ybacy
y

     (7) 
 
From (7), let 
 

,
2

2

2

1
a

bac
P

−
= ,

2

2
2

2

2
bac

bdc
P

−

−
= and bdc

d
P

22

2

3
−

=  

 
Hence the roots of the original equation as given in equation (7) are; 
 

r

ii Px 2=  

 
And substituting the initial coefficients from equation (5) into (7) gives; 
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2

1

2
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bac
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−
= ; 2

2

2

2
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2

bac

bdc
x

−

−
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2

2

3
2bdc

d
x =  

 
Second Iteration 
From (7) let 
 

022 2222232 =−−+−+ dbdyycybacyya      (8) 
 

0)2()2( 222232 =−−+−+ dybdcybacya  

 

Let ,2aE = ,2 2bacF −= ,22 bdcG −= 2dH =  

 

023 =−++ HGyFyEy  

   
Separating the even power terms from those of the odd power gives; 
 

)()( 23 HFyGyEy +−=+  

 
Squaring both sides of the above gives; 
 

2223 )()( HFyGyEy +−=+  

 

))(())(( 2233 HFyHFyGyEyGyEy +−+−=++  

 
22242224462 HFHyFHyyFyGEGyEGyyE +−−=+++  

 
224222462 22 HFHyyFyGEGyyE +−=++  

 
Collecting the like terms 
 

022 222242462 =−++−+ HFHyyGyFEGyyE  

 

0)2()2( 2224262 =−++−+ HyFHGyFEGyE     (9) 
 

Putting zy =2
in equation (9) gives; 

 

0)2()2( 222232 =−++−+ HzFHGzFEGzE  

 

Dividing through by 2E in the above, we have; 
 

0
)2()2(

2

2

2

2

2

222
3 =−

+
+

−
+

E

H

E

zFHG

E

zFEG
Z

    (10) 
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From (10), let 
 

,
2

2

2

1
E

FEG
P

−
= ,

2

2
2

2

2
FEG

FHG
P

−

+
= and

FHG

H
P

22

2

3
+

=  

 
Hence the roots of the original equation as given in (10) are; 

 
r

ii Px 2=  

 
And substituting the initial coefficients from equation (5) into (10) gives; 
 

4
4

2222

1
4

2

2

1

)2()2(22

a

bacbdca
x

E

FEG
x

−−−
=

−
=  

 

( )  
4

2222

2222

2
4

2

2

2
)2()2(2

222

2

2

bacbdca

dbacbdc
x

FEG

FHG
x

−−−

−+−
=

−

+
=  

 

( )
 

4
2222

22

3
4

2

2

3
22)2(2 dbacbdc

d
x

FHG

H
x

−+−
=

+
=  

 
Third Iteration 
From (10) let 
 

0)2()2( 222232 =−++−+ HzFHGzFEGzE      (11) 
 

Let ,2ED = ,2 2FEGP −= ,22 FHGQ += 2HW =  

 

023 =−++ WQzPzDz  

 
Separating the even power terms from those of the odd power gives; 
 

)()( 23 WPzQzDz +−=+  

 
Squaring both sides of the above gives; 
 

2223 )()( WPzQzDz +−=+  

 

))(())(( 2233 WPzWPzQzDzQzDz +−+−=++  

 
22242224462 WPWzPWzzPzQDQzDQzzD +−−=+++  

 
224222462 22 WPWzzPzQDQzzD +−=++  
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Collecting the like terms 
 

022 222242462 =−++−+ WPWzzQzPDQzzD  

 

0)2()2( 2224262 =−++−+ WzPWQzPDQzD      (12) 
 

Putting Lz =2 in equation (12) gives; 
  

0)2()2( 222232 =−++−+ WLPWQLPDQLD  

 

Dividing through by 2D in the above, we have; 
 

0
)2()2(

2

2

2

2

2

222
3 =−

+
+

−
+

D

W

D

LPWQ

D

LPDQ
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     (13) 
 
From (13), let 
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2

2

2

1
D

PDQ
P

−
= ,

2

2
2

2

2
PDQ

PWQ
P

−

+
= and PWQ

W
P

22

2

3
+

=  

 
Hence the roots of the original equation as given in equation (13), are; 
 

r

ii Px 2=  

 
And substituting the initial coefficients from equation (5) into (13) gives; 
 

8
2

2

1

2

D

PDQ
x

−
=

   
8

4

222222224

1

)2()2(2)2(2)2(2

a

bacbdcadbacbdca
x

−−−−−+−
=  

 

8
2

2

2
2

2

PDQ

PWQ
x

−

+
=  

 

( ) ( ) ( )( ) 
   

8
222222224

422222222

2
)2()2(2)2(2)2(2

2)2(22222

bacbdcadbacbdca

dbacbdcadbacbdc
x

−−−−−+−

−−+−+−
=  

 

8
2

2

3
2PWQ

W
x

+
=  
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Fourth Iteration: 
From (13) let 
 

0)2()2( 222232 =−++−+ WLPWQLPDQLD      (14) 
 

Let ,2DT = ,2 2PDQR −= ,22 PWQN += 2WM =  
 

023 =−++ MNLRLTL  
 
Separating the even power terms from those of the odd power gives; 
 

)()( 23 MRLNLTL +−=+  
 

Squaring both sides of the above, gives; 
 

2223 )()( MRLNLTL +−=+  

 

))(())(( 2233 MRLMRLNLTLNLTL +−+−=++  

 
22242224462 MRMLRMLLRLNTNLTNLLT +−−=+++  

 
224222462 22 MRMLLRLNTNLLT +−=++  

 

Collecting the like terms 
 

022 222242462 =−++−+ MRMLLNLRTNLLT  
 

0)2()2( 2224262 =−++−+ MLRMNLRTNLT       (15) 
 

Putting JL =2  in equation (15), gives; 
 

0)2()2( 222232 =−++−+ MJRMNJRTNJT  
 

Dividing through by 2T  in the above, we have; 
 

0
)2()2(

2

2

2

2

2

22
3 =−

+
+

−
+

T

M

T

JRMN

T

JRTN
J

      (16) 
 

From (3.25), let 
 

,
2

2

2

1
T

RTN
P

−
= ,

2

2
2

2

2
RTN

RMN
P

−

+
= and RMN

M
P

22

2

3
+

=  

 
Hence the roots of the original equation as given in equation (16), are; 
 

r

ii Px 2=  
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And substituting the initial coefficients from equation (5) into (16) gives; 
 

16
2

2

1

2

T

RTN
x

−
=  ,  

 

( ) ( )  ( ) ( ) 

( ) ( )  ( ) ( ) 
 

)17(

2222222

22222222

8
82

2
2222222224

42222
2

22228

1

a

bacbdcadbacbdca

dbacbdcadbacbdca

x






−−−−−+−−







−−−+−+−

=

 

 

16
2

2

2
2

2

RTN

RMN
x

−

+
=  

 

( ) ( )  ( ) ( ) 

( ) ( )  ( ) ( ) 

( ) ( )  ( ) ( ) 

( ) ( )  ( ) ( ) 
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22222222

22222222
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2
222222224

42222
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
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−−−−−−−−
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
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
−−−+−+−
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bacbdcabacbdca

dbacbdcadbacbdca

dbcabdcadbcabdca

dbcabdcadbcabdc

x

 

 

16
2

2

3
2RMN

M
x

+
=  

 

( )

( ) ( )  ( ) ( ) 

( ) ( )  ( ) ( ) 

)19(

22222222

2222222
16

8
222222222224

422222
2

22222
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3

dbcabdcadbcabdca

dbcabdcadbcabdc

d
X







−−−−−−−−






 −−−+−+−

=
 

 
APPLICATION OF THE SCHEME TO THE THIRD ORDER POLYNOMIAL PROBLEM 

SOLUTIONS 
Example 3.1 

Obtain the solution to the polynomial 3x +2 2x -5 x -6=0 
 
 
 
 



Journal of Research in Engineering and Computer Sciences (JRECS) 

 

 
 

9 

Table 1: Comparison between Exact solution and Graeffe method via Tabular and Graphical 
Profiles 

Iterati
on 

Exact Method Graeffe Method Error 

 
1x  

2x  
3x  

1x  
2x  

3x  
1x  

2x  
3x  

1 -
3.000000
000 

2.000000
000 

-
1.000000
000 

-
3.741657
387 

1.870828
693 

-
0.857142
856 

0.741657
387 

0.129171
307 

-
0.142857
144 

2 -
3.000000
000 

2.000000
000 

-
1.000000
000 

-
3.146346
284 

1.941696
108 

-
0.982117
548 

0.146346
284 

0.058303
892 

-
0.017882
452 

3 -
3.000000
000 

2.000000
000 

-
1.000000
000 

-
3.014443
336 

1.991425
261 

-
0.999493
821 

0.014443
336 

0.008574
739 

-
0.000506
179 

4 -
3.000000
000 

2.000000
000 

-
1.000000
000 

-
3.000285
258 

1.999811
756 

-
0.999999
044 

0.000285
258 

0.000882
440 

-
0.000000
956 

 
Table 2: Extended version of table 1 

 Exact values Graeffe values 

S/N x  y  x  y  

1 -4.000000000 -18.00000000 -4 -18 

2 -3.000000000 0.000000000 -3.000285258 -0.00285315 

3 -2.000000000 4.000000000 -3.999999999 -17.99999997 

4 -1.000000000 0.000000000 -2.999999999 1E-08000000 

5 0.000000000 -6.000000000 -1.999811756 3.999811614 

6 1.000000000 -8.000000000 -1.999999999 3.999999999 

7 2.000000000 0.000000000 -0.999999044 -5.736E-06000 

8 3.000000000 24.00000000 -0.99999999 -6E-08000000 

9 4.000000000 70.00000000 0 -6 

 

 
Fig 1: Graphical Comparison of Exact and Graeffe’s Solution for 3x +2 2x -5 x -6=0 

 
Example 3. 2 

Obtain the solution to the polynomial 04423 =+−− xxx  



Ogwumu et al., 2024 

 
 

10 

Table 3: Comparison between Exact solution and Graeffe method via Tabular and Graphical 
Profiles 

Iterati
on 

Exact Method Graeffe Method Error 

 
1x  

2x  
3x  

1x  
2x  

3x  
1x  

2x  
3x  

1 2.000000
000 

-
2.000000
000 

1.000000
000 

3.000000
000 

-
1.632993
162 

0.816496
58 

-
1.000000
000 

-
0.367006
838 

0.183503
420 

2 2.000000
000 

-
2.000000
000 

1.000000
000 

2.396781
727 

-
1.718777
41 

0.970983
543 

-
0.396781
727 

-
0.281222
590 

0.029012
457 

3 2.000000
000 

-
2.000000
000 

1.000000
000 

2.181547
485 

-
1.835345
318 

0.999027
705 

-
0.181547
485 

-
0.164654
682 

0.000972
295 

4 2.000000
000 

-
2.000000
000 

1.000000
000 

2.088548
561 

-
1.915209
301 

0.999998
092 

-
0.088548
500 

-
0.047906
990 

0.000001
908 

  
Table 4: Extended version of table 3 

Number of iterations Exact values Graeffe values 

S/N x  y  x  y  

1 -3.000000000 -20.00000000 -3.000000000 -20.00000000 

1 -2.000000000 0.000000000 -2.0885485610 -1.118162961 

1 -1.000000000 6.000000000 -2.9999999990 -19.99999997 

2 0.000000000 4.000000000 -1.9152093010 0.967771749 

2 1.000000000 0.000000000 -1.9999999990 1.2E-0800000 

2 2.000000000 0.000000000 -0.9999999990 6.000000001 

3 3.000000000 10.00000000 0.000000000 4.000000000 

3 4.000000000 36.00000000 0.9999980920 5.72401E-06 

3 5.000000000 84.00000000 0.9999999990 3E-09000000 

 

 
Fig 2: Graphical Comparison of Exact and Graeffe’s Solution for 04423 =+−− xxx  
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APPLICATION AND COMPARISON OF THE GRAEFFE’S SCHEME AND THE NEWTON 
RAPHSON METHOD 

Example 3.3 

Obtain the solution to polynomial byx 0212 =−  (2009) Verma and Patil  

 
Note 
For a second-degree problem, using equation (5) we set the coefficient a = 0 in order to use 
solution results in equations (17), (180 and (19) respectively. 
 

0)(0.;. 23 =+++ dcxbxxei  

 
Hence, the table 5 below comprises the solution results to example 3.3 via Newton Raphson and 
Graeffe’s method. 
 

Table 5: Comparison between the Results of Newton Raphson and Graeffe method. 
Iteration Newton Raphson by 

(2009) Verma and Patil  
Graeffe method Exact 

 
1x  2x  1x  2x  1x  2x  

1 6.250000000 -- 6.480740698 -3.240370349 4.582575695 - 4.582575695 

2 5.787600000 -- 5.449631621 -3.853471475 4.582575695 - 4.582575695 

3 5.414534658 -- 5.732955275 -3.663032240 4.582575695 - 4.582575695 

4 5.130838069 -- 4.735463654 -4.388289518 4.582575695 - 4.582575695 

 
Example 3.2 

Obtain the solution to the polynomial (2012)Sastry  0523 =−− xx  

 
Table 6: Comparison between the Results of Newton Raphson and Graeffe method. 

 
DISCUSSION OF RESULTS 

From table 1, 2, 3, 4 and the graphs in figures 1 and 2, it could be deduced that our proposed 
Graeffe’s scheme compared favourably with the exact solution of the problem considered. 
Another insight from the graphs of the solution to the problems plotted suggested that the 
Graeffe’s method of solution coincided with the exact solution after the fourth iteration, which 
thus recommends the method to be suitable for the solutions of such family of problems 
considered.  
 

Iteration Newton Raphson Method 

by (2012)Sastry  

Graeffe Method Error 

 
1x  

2x  
3x  

1x  
2x  

3x  
1x  

2x  
3x  

1 2.100000000 -- -- 2.000000000 -
1.000000000 

 
2.500000000 

2.094551482 Complex 
Root 

Complex 
Root 

2 2.094568000 -- -- 1.681792831 -
2.189938703 

-
1.357580367 

2.094551482 Complex 
Root 

Complex 
Root 

3 2.094551000 -- -- 2.135184796 1.651065420 1.418307179 2.094551482 Complex 
Root 

Complex 
Root 

4 2.094551000 -- -- 2.096144584 -
1.589922474 

-
1.500281731 

2.094551482 Complex 
Root 

Complex 
Root 

5 2.094551000 -- -- 2.094551082 -
1.019922474 

-
1.011922474 

2.094551482 Complex 
Root 

Complex 
Root 
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Similarly, from tables 5 and 6 using the work of [11], it could be observed that after the fifth 
iteration, the Graeffe’s method converges approximately to the exact solution. And thus, it could 
be deduced that our scheme competed favourably with the existing method by Newton Raphson 
and even in most cases noted to be much better (when the comparison analysis was made) using 
the works of Patil and Verma (2009) and Sastry (2012) respectively. Moreso, for problems with 
complex roots solved using table 6, while Newton Raphson’s method could not give further 
information about the complex roots, the Graeffe’s method gave values that almost coincided 
with the real parts of the complex roots of the problem considered. 
 

CONCLUSION 
According to [2, 10, 11], it is known that every polynomial of degree n must have n-number of 
roots. Thus, the comparison analysis made by this study with respect to the exact solutions of the 
considered problems revealed that using the Graeffe’s method as derived in our scheme will 
always succeed in providing all the n-number of roots as required for any polynomial of degree n 
unlike using the Newton Method. Specifically, in some cases where it is difficult to solve the 
polynomial using the exact/analytical method, the Graeffe’s method developed in this study will 
prevail and become a better option provided the roots are real or distinct. 
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