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Abstract:

The research is concerned with the presentation of a tutorial extract on the Graeffe’s
Root-finding scheme derivation and application for the solution of third-degree
Polynomial of the form, f(x) = 0. Thereafter, we tested the efficiency of our proposed
scheme by applying it to a range of Third-Degree polynomial problems in literature
reviewed. The outcome of the comparison of the roots generated by the Graeffe’s root-
finding scheme to their respective exact solution showed that the scheme gave a better
approximation to the exact solution at every fourth iteration. Thus, the proposed
scheme in this research can be said to be another better suitable numerical approach
for the solution of third-degree polynomial that their exact solutions are difficult to
arrive at. The procedures for the scheme derivation can be easily followed for the
solution of other higher degree auxiliary equations.
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INTRODUCTION

Most differential equations’ auxiliary polynomials and some other polynomials are indeed tricky
to address in the world of science and engineering today (especially those above second degrees
and those that cannot be easily factorised). Thus, various methods that can suit the need of
scientists have been evolving. Historically, over some decades ago till date, the exact solution to
such polynomials of degree three or anyone higher, has been solely tied to trial-and-error (or
guess) method. But this trial-and-error approach however, appears almost not scientifically
inclined. Hence, in order to salvage this situation, a numerical method proposed by Graeffe
Dandlin becomes unavoidable since it provides all the n-number of roots to any polynomial of
degree n. According to [2], the Graeffe’s Numerical Method of finding the roots of polynomials is
one among many methods recommended for the numerical solution of polynomial equations.
This Graeffe root finding method gives all the roots approximations from the first to the last
iteration [8]. It is one of the direct roots-finding-methods in literature.

One of the motivations for this research emanates from the fact that in the field of engineering
and computational sciences, most differential equations cannot be successfully solved without
firstly resolving their reduced auxiliary equations via the help of any root-finding algorithms. The
situation becomes even worst when great scientists are handicapped when auxiliary equations
cannot be easily factorised via trial-and-error approach. Hence the need for escape route just as
this study has proposed cannot be avoided.
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Similarly, this method does not require any initial guesses for roots. Going down the memory lane,
the Graeffe root finding method was invented independently by Graeffe Dandlin and
Lobachevesky in the 19™ and 20" century [6,3]. It was seen to be the most popular numerical
method for finding roots of polynomials; [7,4,5]. In view of the fact that most numerical methods
have limitations and shortcomings, the limitations of the Graeffe's root finding algorithm are
manageable and even avoided in an efficient implementation, according to [6]. Additionally, the
beauty of the Graeffe’s root finding algorithm was likewise demonstrated by [11] for only second-
degree polynomials and in [13]. But the third-degree polynomials have not been widely explored
in the directions recommended by this study.

However, despite the good sides of the Graeffe’s algorithm, according to [1], special cases in
Graeffe's method exists such that, if maximum power of polynomial is odd and after squaring, if
any coefficient of the function except the constant term, is zero, the method does not give exact
roots. An example of such problem that belongs to this category is: if f(x) = x3-1= 0.

DERIVATION OF THE GRAEFFE’'S ROOTS SQUARING NUMERICAL SCHEME FOR THE

SOLUTION OF THIRD ORDER POLYNOMIAL OF THE FORM, f(x) =0
In order to derive the numerical scheme for this study, some numbers of iterations are needed.
The higher the number of iterations made for a certain problem, the better the numerical result
of the roots of the polynomials in comparison with the exact solution. Generally, according to [1],
a minimum of four iterations is almost sufficient to arriving at a better approximation to the exact
solution. Therefore, in this numerical scheme derivation subsection, we intend to stop after the
fourth iteration. The following are the iterations for the complete scheme/algorithm presented in
equations (17), (18) and (19).

First Iteration
Recalling from the general problem of the form, (1)

f(x)=0 (2)

Now, from equation (1), if the polynomial is of degree 2, the roots will definitely correspond to the
roots obtainable using quadratic formula:

_ —b++b*-4ac

2a

X

(2)

Since our interest is for third order polynomials, we considered the polynomial whose highest
power/degree is odd as shown in equation (3) below.

2n+1 2n-2

f(x) =ax®™ +bx®" +cx®"* + dx (3)

Likewise, setting f(x)=0 in equation (3) above gives;

ax®™ +bx*" +ex>" T +dx*"? =0 (4)

But from equation (4), assuming that the roots are real and distinct, we separate the even power
terms from those of odd power. Thus putting n =1,in the above equation (3), we have;



Journal of Research in Engineering and Computer Sciences (JRECS)
ax® +bx* +cx+d =0 (5)

Separating the even power terms from those of the odd power gives;
(ax® +cx) = (-bx* —d)

Squaring both sides of the above gives;
(ax® +cx)? = (-bx® —d)?
(ax® +cx)(ax® +cx) = (-bx* —d)(-bx* - d)
a’x® +acx* +acx’ +c*x® =b’x* + bdx* + bdx* +d?
a’x® +2acx* +c¢*x® =b*x* + 2bdx* +d?
Collecting the like terms
a’x® +2acx* +¢’x* —b*x* —2bdx* —d* =0
a’x® +2acx* —b*x* +c¢?x* —2bdx* —d* =0 (6)
Putting x* = Yy in equation (6), gives;
a’y® +2acy’ —b*y® +c’y—2bdy—d* =0
a’y® +(2acy* —b?)y* +(c’y—2bd)y-d*=0

Dividing through by a®in the above, we have;

2 h2y,,2 2 2
g4 229y —b)y” (¢ =2bd)y d”

0
a? a’ a? (7)
From (7), let
P_2ac—b2 P_cz—2bd . d?
YT a2 % 2ac—p2’and o2 _opg

Hence the roots of the original equation as given in equation (7) are;

x, =+Z[P

And substituting the initial coefficients from equation (5) into (7) gives;
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R 2 2
oy = 2aczb ,x2=izc 2b(3 dx, =+ 2d
a 2ac—b c“2bd
Second Iteration
From (7) let
a’y® +2acy’ —b*y* +c’y—2bdy—-d® =0 ®)

a’y® +(2ac—-b?)y* +(c*-2bd)y—-d® =0
Let E=a’, F=2ac-b* G=c*-2bd, H =d?
Ey*+Fy?+Gy-H =0
Separating the even power terms from those of the odd power gives;
(Ey® +Gy)=(-Fy* + H)
Squaring both sides of the above gives;
(Ey* +Gy)* =(-Fy* + H)*
(Ey” +Gy)(Ey’ +Gy) = (-Fy” + H)(-Fy” + H)
E’y® + EGy* + EGy* +G?y* =F?y* —FHy” —FHy* + H?
E?y® +2EGY* +G?y? =F?y* —2FHy* + H?
Collecting the like terms
E’y® +2EGy* —F%y* +G?y* + 2FHy* —H?* =0
E’y® +(2EG-F?)y* +(G* +2FH)y* —H?* =0
Putting y® =zin equation (9) gives;
E’2® +(2EG-F?)z° +(G* +2FH)z-H* =0
Dividing through by E?in the above, we have;

(2EG? —F2)z? (G2+2FH)z H?
2t E? e e
(10)
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From (10), let

= 2 2
P1=2EGZF ,P2=G +2FI—2|'andP3: H
E 2EG-F G? +2FH

Hence the roots of the original equation as given in (10) are;
X; =+3/P,

And substituting the initial coefficients from equation (5) into (10) gives;

. zid@ o :J_“JZaz(cz ~2bd) - (2ac—b?)
E | a |
Xzzi‘{/mszzﬂ(cz—2bd)z+2[2ac—b2]d2
2EG - F? 28°(c” —2bd) — (2ac—b?)’|
NV R
G +2FH

I+

3:

| o |
1/ —2bd)? + 2f2ac—b2}7|

Third Iteration
From (10) let

E’2° +(2EG-F*)2* +(G*+2FH)z-H* =0
Let D=E? P=2EG-F* Q=G?+2FH,W =H?
Dz°® +Pz* +Qz-W =0
Separating the even power terms from those of the odd power gives;
(Dz® +Qz) = (-Pz* +W)

Squaring both sides of the above gives;
(Dz° +Qz)* = (-Pz* +W)?
(Dz® +Qz)(Dz® +Qz) = (-Pz* +W)(-Pz* +W)
D?z% + DQz* + DQz* +Q%z* = P%*z* — PWz? — PWz% +W?

D?z% +2DQz* + Q?z* = P?z* —2PWz? +W?
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Collecting the like terms
D?z° +2DQz* —P?z* +Q%z* + 2PWz* -W? =0

D?z° + (2DQ - P?)z* +(Q* + 2PW)z* -W? =0

(12)
Putting z® = L in equation (12) gives;
D?L* +(2DQ - P*)L* +(Q* +2PW)L-W? =0
Dividing through by D?in the above, we have;
L3y (2DQ2D—2P2)L2 . (Q? +§2PW)|_ _v[\;E o
(13)
From (13), let
_2DQ-P? | Q% +2PW W ?

Pl

== - Pp—-_ '
D? 27 2DQ-p2'and 2 o7 opwy

Hence the roots of the original equation as given in equation (13), are;

X, =+3/P

And substituting the initial coefficients from equation (5) into (13) gives;

2DQ - P’ 2a*|(c? - 2bd)? + 2(2ac—b?)d? |- |2a’ (c? - 2bd) - (2ac —b?)?|
X =t 8=~ x, =% 8 .
D | a |
2
X, :ig/w
2DQ-P

4 || 2= 2bd) +2(2ac—b*)a* + [2(2a? (c® — 2bd)oac—b® [ H* |
2T \Za“[(c2 —2bd)” +2(2ac-b*)d* |- [2a* (¢* - 2bd) - (2ac—b*)? |

WZ
S [T

J| (o'} |
(c? — 26d ) + 2(2ac b2 2| - |2(2a (c? - 20d))- (2ac —b2 f
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Fourth Iteration:
From (13) let

D2L® +(2DQ - P?)L? + (Q% + 2PW)L-W?2 =0

(14)
Let T =D? R=2DQ-P?, N=Q*+2PW, M =W?
T +RL*+NL-M =0
Separating the even power terms from those of the odd power gives;
(TL® + NL) = (-RL* + M)
Squaring both sides of the above, gives;
(TL® + NL)? = (-RL* + M)?
(TL® + NL)(TL® + NL) = (-RL* + M)(-RL? + M)
T2L° +TNL* +TNL* + N?L? = R?L* = RML® —RML? + M
T?L® + 2TNL* + N?L* = R’L* —2RML* + M ?
Collecting the like terms
T?L® + 2TNL* —R?L* + N°L* + 2RML* - M? =0
T?L°+(2TN =R*)L* +(N* +2RM)L* -M?* =0 (15)
Putting L? = J in equation (15), gives;
T?J°+(2TN -R*)J* +(N* +2RM)J -M? =0
Dividing through by T? in the above, we have;
334 (2TN —ZRZ)J2 N (N? +22RM)J B MZ2 0
T T T (16)
From (3.25), let

Hence the roots of the original equation as given in equation (16), are;

x, =+Z[P.
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And substituting the initial coefficients from equation (5) into (16) gives;

2
Xl:im/ZTl\_lrz—R ,

2a8|:[(02 ~2bd) +2(2ac - b2 2] + 2a?(c? —2bd)—(2ac—b2)2}i4}

_ [23_4[((:2 —2bd ) +2(2ac-b?)d 2]— [2a2(02 — 2bd)- (2ac-b? )’ ]T

X, = iT [az]g 17)
X, = %1 N? +2R|\2/|
2TN —R
H(c2 —2bd)2 + 2(2a2c—b2)dz]2 *2[232(C2 _Zbd)—(zazc‘bz)z]da}2
_2[2a4[(02 ~2bd) - 2(2a%c b2 )2 |- [pa(c? —Zbd)—(ZaZC—bz)z]z}dg
- @18)
T Zas[[(cz —2bdf + 2(2ac—b2)d2]2 +2[2a2(02 —Zbd)—(zac—bz)z]‘“}
B TR | SR
M 2
X =t T o
) i
- : 19)
+T H(CZ ~abd) +2(2a%c —b2 )2 [ +2fpat(c? —Zbd)—(Zazc—bz)z]dA}

—2[2::1“[(c2 —2bd)2 —2(2azc—b2)d2]—[2a2(c2 —2bd)—(2azc—b2)zﬂd8

APPLICATION OF THE SCHEME TO THE THIRD ORDER POLYNOMIAL PROBLEM

SOLUTIONS
Example 3.1

Obtain the solution to the polynomial x* +2 x*-5 X -6=0
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Table 1: Comparison between Exact solution and Graeffe method via Tabular and Graphical
Profiles

Iterati Exact Method Graeffe Method Error
on
X, X, X4 X, X, X4 X, X, X4
1 - 2.000000 | - - 1.870828 | - 0.741657 | 0.129171 | -
3.000000 | 000 1.000000 | 3.741657 | 693 0.857142 | 387 307 0.142857
000 000 387 856 144
2 - 2.000000 | - - 1.941696 | - 0.146346 | 0.058303 | -
3.000000 | 000 1.000000 | 3.146346 | 108 0.982117 | 284 892 0.017882
000 000 284 548 452
3 - 2.000000 | - - 1.991425 | - 0.014443 | 0.008574 | -
3.000000 | 000 1.000000 | 3.014443 | 261 0.999493 | 336 739 0.000506
000 000 336 821 179
4 - 2.000000 | - - 1.999811 | - 0.000285 | 0.000882 | -
3.000000 | 000 1.000000 | 3.000285 | 756 0.999999 | 258 440 0.000000
000 000 258 044 956
Table 2: Extended version of table 1
Exact values Graeffe values
S/N | X y X y
1 -4,000000000 | -18.00000000 | -4 -18
2 -3.000000000 | 0.000000000 | -3.000285258 | -0.00285315
3 -2.000000000 | 4.000000000 | -3.999999999 | -17.99999997
4 -1.000000000 | 0.000000000 | -2.999999999 | 1E-08000000
5 0.000000000 | -6.000000000 | -1.999811756 | 3.999811614
6 1.000000000 | -8.000000000 | -1.999999999 | 3.999999999
7 2.000000000 | 0.000000000 | -0.999999044 | -5.736E-06000
8 3.000000000 | 24.00000000 | -0.99999999 -6E-08000000
9 4.000000000 | 70.00000000 |O -6
70 1
60 4
50
40
304 Graeffe curve
E xact curve
20
10 -
L T R I A
.
_1|}_

Fig 1: Graphical Comparison of Exact and Graeffe’s Solution for X° +2 x’-5 X -6=0

Example 3. 2
Obtain the solution to the polynomial x* — x*> —4x+4=0
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Table 3: Comparison between Exact solution and Graeffe method via Tabular and Graphical

Profiles
Iterati | Exact Method Graeffe Method Error
on
X, X, X X, X, X4 X, X, X4
1 2.000000 | - 1.000000 | 3.000000 | - 0.816496 | - - 0.183503
000 2.000000 | 000 000 1.632993 | 58 1.000000 | 0.367006 | 420
000 162 000 838
2 2.000000 | - 1.000000 | 2.396781 | - 0.970983 | - - 0.029012
000 2.000000 | 000 727 1.718777 | 543 0.396781 | 0.281222 | 457
000 41 727 590
3 2.000000 | - 1.000000 | 2.181547 | - 0.999027 | - - 0.000972
000 2.000000 | 000 485 1.835345 | 705 0.181547 | 0.164654 | 295
000 318 485 682
4 2.000000 | - 1.000000 | 2.088548 | - 0.999998 | - - 0.000001
000 2.000000 | 000 561 1.915209 | 092 0.088548 | 0.047906 | 908
000 301 500 990
Table 4: Extended version of table 3
Number of iterations | Exact values Graeffe values
S/N X y X y
1 -3.000000000 | -20.00000000 | -3.000000000 | -20.00000000
1 -2.000000000 | 0.000000000 | -2.0885485610 | -1.118162961
1 -1.000000000 | 6.000000000 | -2.9999999990 | -19.99999997
2 0.000000000 | 4.000000000 | -1.9152093010 | 0.967771749
2 1.000000000 | 0.000000000 | -1.9999999990 | 1.2E-0800000
2 2.000000000 | 0.000000000 | -0.9999999990 | 6.000000001
3 3.000000000 | 10.00000000 | 0.000000000 4.000000000
3 4.000000000 | 36.00000000 | 0.9999980920 | 5.72401E-06
3 5.000000000 | 84.00000000 | 0.9999999990 | 3E-09000000
v
80
60
40 1
Graeffe curvy
Exact curve
20 -
-3 /a 10 1 2 3 4 5
:-J: x
I 204
Fig 2: Graphical Comparison of Exact and Graeffe’s Solution for x* — x*> —4x+4=0
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APPLICATION AND COMPARISON OF THE GRAEFFE'S SCHEME AND THE NEWTON
RAPHSON METHOD

Example 3.3
Obtain the solution to polynomial x* —21=0 by Patiland Verma (2009)

Note
For a second-degree problem, using equation (5) we set the coefficient a = o in order to use
solution results in equations (17), (180 and (19) respectively.

ie; 0(x®)+bx* +cx+d=0

Hence, the table 5 below comprises the solution results to example 3.3 via Newton Raphson and
Graeffe’s method.

Table 5: Comparison between the Results of Newton Raphson and Graeffe method.

Iteration | Newton Raphson by | Graeffe method Exact
Patiland Verma (2009)
Xl X2 Xl X2 Xl X2
1 6.250000000 -- 6.480740698 | -3.240370349 | 4.582575695 | - 4.582575695
2 5.787600000 -- 5.449631621 | -3.853471475 | 4.582575695 | - 4.582575695
3 5.414534658 -- 5.732955275 | -3.663032240 | 4.582575695 | - 4.582575695
4 5.130838069 -- 4,735463654 | -4.388289518 | 4.582575695 | - 4.582575695
Example 3.2
Obtain the solution to the polynomial x® —2x-5=0 Sastry (2012)

Table 6: Comparison between the Results of Newton Raphson and Graeffe method.

Iteration | Newton Raphson Method | Graeffe Method Error
by Sastry (2012)
Xl X2 XS Xl X2 X3 Xl X2 X3
1 2.100000000 2.000000000 | - 2.094551482 | Complex | Complex
1.000000000 | 2.500000000 Root Root
2 2.094568000 1.681792831 | - - 2.094551482 | Complex | Complex
2.189938703 | 1.357580367 Root Root
3 2.094551000 2.135184796 | 1.651065420 | 1.418307179 | 2.094551482 | Complex | Complex
Root Root
4 2.094551000 2.096144584 | - - 2.094551482 | Complex | Complex
1.589922474 | 1.500281731 Root Root
5 2.094551000 2.094551082 | - - 2.094551482 | Complex | Complex
1.019922474 | 1.011922474 Root Root

DISCUSSION OF RESULTS
From table 1, 2, 3, 4 and the graphs in figures 1 and 2, it could be deduced that our proposed
Graeffe's scheme compared favourably with the exact solution of the problem considered.
Another insight from the graphs of the solution to the problems plotted suggested that the
Graeffe’s method of solution coincided with the exact solution after the fourth iteration, which
thus recommends the method to be suitable for the solutions of such family of problems
considered.

11
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Similarly, from tables 5 and 6 using the work of [11], it could be observed that after the fifth
iteration, the Graeffe’s method converges approximately to the exact solution. And thus, it could
be deduced that our scheme competed favourably with the existing method by Newton Raphson
and even in most cases noted to be much better (when the comparison analysis was made) using
the works of Patil and Verma (2009) and Sastry (2012) respectively. Moreso, for problems with
complex roots solved using table 6, while Newton Raphson’s method could not give further
information about the complex roots, the Graeffe’s method gave values that almost coincided
with the real parts of the complex roots of the problem considered.

CONCLUSION

According to [2, 10, 11], it is known that every polynomial of degree n must have n-number of
roots. Thus, the comparison analysis made by this study with respect to the exact solutions of the
considered problems revealed that using the Graeffe’s method as derived in our scheme will
always succeed in providing all the n-number of roots as required for any polynomial of degree n
unlike using the Newton Method. Specifically, in some cases where it is difficult to solve the
polynomial using the exact/analytical method, the Graeffe's method developed in this study will
prevail and become a better option provided the roots are real or distinct.
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