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Abstract: 
In every nonabelian neutrosophic p-group G(I), possessing two neutrosophic cyclic 
subgroups X(I)i and X(I)j, the quotient neutrosophic group of G (I) by X(I)i is isomorphic 
to the neutrosophic cyclic group X(I)j for i, j ∈ {1, 2}, i /= j. Moreover, if p > 2 and G(I) is 
metacyclic, possessing a neutrosophic nonabelian section Y (I), of order p3, then Y (I) is 
a trivial neutrosophic subgroup of G(I). 
 
Keywords: Nonabelian neutrosophic group, neutrosophic quotient group, neutrosophic 
cyclic group, neutro- sophic section, neutrosophic pyramidal group 

 

 
INTRODUCTION 

The finite neutrosophic p-groups possess many remarkable characterizations of which majority 
of their proofs were given by Burnside, Frobenius, Sylow and a host of other Mathematicians. 
 
This paper purposes to present some of the input efforts in classifying the neutrosophic p-groups 
most especially, those with a neutrosophic cyclic subgroup of index p. Part of the work also leads 
to the computation of the number of neutrosophic subgroups of a given order in a neutrosophic 
metacyclic p-group. A lot of developments are ongoing concerning the concepts of refined 
neutrosophic algebraic structures. Neutrosophic researchers such as Agboola Adesina has been 
able to successfully introduce vital and useful tools in this particular regard (please, see [2]). After 
the suc- cessful feat, many other neutrosophic researchers have as well tried to establish and 
studied further more on the refined neutrosophic algebraic structures. (Please, see [3]). Further 
studies on refined neutrosophic rings and refined neutrosophic subrings, their presentations and 
fundamental were also worked upon. 
 
Also, Agboola, in his paper [1] has examined and as well studied the refined neutrosophic quotient 
groups, where more properties of refined neutrosophic groups were presented and it was shown 
that the classical isomorphism theorems of groups do not hold in the refined neu- trosophic 
groups. The existence of classical morphisms between refined neutrosophic groups G (I1; I2) and 
neutrosophic groups G(I) were established. The readers can as well consult [4, 5, 6, 7 and 13] in 
order to have detailed knowledge concerning the refined neutrosophic logic, neutrosophic 
groups, refined neutrosophic groups and neutrosophy, in general. 
 
Please note the following: 
Throughout this paper, our BINARY OPERATION is strictly not of multiplication (as this may not be 
defined due to the fact that I−1 does not exist) 
 
Definition 1 
(Please, see [1]): Suppose that (X (I1; I2); +;.) is any refined neutrosophic algebraic structure. Here, 
+ and. are ordinary addition and multiplication respectively. Then I1 and I2 are the split 
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components of the indeterminacy factor I that is I = α1I1 + α2I2 with αi ∈ C; i = 1; 2. 
 
Definition 2 
(Please, see [1]): Suppose that (G; ∗) is any group. Then, the couple (G (I1; I2); ∗) can be referred 
to as the refined neutrosophic group. Furthermore, this group can be said to be generated by G, 
I1 and I2 and (G (I1; I2); ∗) is said to be commutative if ∀x; y ∈ G (I1; I2), we have x ∗ y = y ∗ x. 
Otherwise, (G (I1; I2); ∗) can be referred to as a non- commutative refined neutrosophic group. 
 
Theorem 1  
(Please, see [1]): (1) Every refined neutrosophic group is a semigroup but not a group. (2) Every 
refined neutrosophic group contains a group. 
 
Corollary  
(Please, see [1]): Every refined neutrosophic group (G (I1; I2); +) is a group. 
 
Definition 3 
(Please, see [1]): Let (G (I1; I2); ∗) be a refined neutrosophic group and let A (I1; I2) be a nonempty 
subset of G (I1; I2). A (I1; I2) is called a refined neutrosophic sub- group of G (I1; I2) if (A (I1; 
I2); ∗) is a refined neutrosophic group. It is essential that A (I1; I2) contains a proper subset 
which is a group. Otherwise, A (I1; I2) will be called a pseudo refined neutrosophic subgroup of G 
(I1; I2). 
 
Definition 4 
(Please, see [1]): Let H (I1; I2) be a refined neutrosophic subgroup of a refined neutrosophic group 
(G (I1; I2) ;). Define x = (a; bI1; cI2) ∈ G (I1; I2). 
 

PRELIMINARIES AND ESSENTIAL DEFINITIONS 

• B(I)x = x−1B(I)x = {bx|b ∈ B(I)} for x ∈ G(I), B(I) ⊆ G(I). 

• [a, b] = a−1b−1ab = a−1ab. The commutator of elements a and b of a group G(I). 

• |W | is the cardinality of the set W. If G(I) is a finite group, then |G(I)| is called the 
order of G(I). 

• o(x) is the order of an element x of G(I). 

• cl(G(I)) is the nilpotence class of aneutrosophic p-group G(I). Here, there exists a 
series given by: G(I) = G(I)0 ≥ G(I)1 ≥ · · · ≥ Gn ≥ G(I)n+1 = {e}. And we say that G(I) is of 
class n. We then write cl(G(I)) = n > 1. 

• A neutrosophic p-group of maximal class is a neutrosophic nonabelian group G(I) 
of order pm, m ≥ 3 with cl(G(I)) = m − 1 > 1. 

• Let G(I) = G(I)1 × · · · × G(I)n, A ≤ G(I) and a ∈ A. Then a = (a1, . . ., an), where ai 
∈ G(I)i ∀ i. Define a projection πi: A −→ G(I)i, setting πi(a) = ai, all a ∈ A. Then, πi is 
a homomorphism and Ai = πi(A) is an epimorphic image of A. This is called the section 
of A. Obviously, A ≤ A1 × · · · × An. 

• A section of a neutrosophic group G(I) is an epimorphic image of some neutrosophic 
subgroups of G(I). 

• Ωn(G(I)) = < x ∈ G(I)| o(x) ≤ pn > 

• ℧n(G(I)) = <xp |x ∈ G(I)> 

• A ⊲ B =⇒ A is a nontrivial normal neutrosophic subgroup of G(I), where H > {1}. 

• A neutrosophic p-group G(I) is said to be homocyclic if it is of type (pn, pn, . . ., pn), n > 0. 
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• Metacyclic neutrosophic Group: This is a group G(I) in which both its commutator 
subgroup G(I)J and the quotient group G(I)/G(I)J are cyclic. It has a neutrosophic cyclic 
normal subgroup (I)L such that G(I)/L(I) is also cyclic. 

 
PROOF OF THE RESULTS 

Definition 
Let G(I) be a group. If G(I) is nonabelian but all its proper subgroups are abelian, then G(I) is said 
to be minimal nonabelian. 
 
Proposition 1: [8] 
Suppose that G(I) is a neutrosophic metacyclic p-group containing a neutrosophic nonabelian 
subgroup V (I) of order p3. Then 

i. if p = 2, G(I) is of maximal class 
ii. if p > 2, then |G(I)| = p3 ⇒ G(I) = V (I). 

 
Lemma 2 (see [8] [12]) 
Suppose that G(I) is a neutrosophic nonabelian metacyclic p-group. 

i. If G(I) is of order p4 and exponent p2 then G(I) is minimal nonabelian. Moreso, if 
p = 2, then G(I) is isomorphic to the group 

 
H2 = < x, y|x4 = y4 = 1, xy = x3 >, 

 
where all subgroups of order 2 are characteristic in G(I). All maximal neutrosophic 
cyclic subgroups of G(I) have order p2. 

ii. By Proposition 1. If G(I) has a neutrosophic nonabelian subgroup of order p3, then 
it is of maximal class. To be specific, if p > 2, then |G(I)| = p3. 

iii. Let B(I) be a normal neutrosophic subgroup of G(I) and p = 2 such that G(I)/B(I) is 
nonabelian of order 23, then B(I) is characteristic in G(I). 

iv. By Theorem 1 and Lemma 2, there are exactly four series of nonabelian 2-groups with 

neutrosophic cyclic subgroup of index 2: viz:  R2n, D2n, Q2n, and SD2n. 
 
Lemma 3  
Suppose that G(I) is a nonabelian 2-group and |G(I): G(I)J| = 4. Then G(I) is as in theorem 1 (ii(a), 
(b), (c)). 
 
Lemma 4  
[8] Let G(I) be a metacyclic 2-group with a nonabelian section of order 23. If G(I) is not of maximal 
class, then 

i. There exists a normal neutrosophic subgroup T (I) ⊲ G(I) such that G(I)/T (I) is iso- 
morphic to Q(I)23 and G(I)/ ℧2(G(I)) is isomorphic to H(I)2. 

ii. V1(G(I)) has no nonabelian section of order 23. 
 
Here comes the analysis of the first part of the assertion. 
 
Let G(I) be as in theorem 1. 
 
If B(I)i ⊆ G(I), i ∈ {1, 2}, such that B(I)i is cyclic, we assert that 
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|G(I)/B(I)i| = |B(I)j |, i ≠ j 
 
In doing this, it suffices to show that G(I)/B(I)i is isomorphic to B(I)j, i /= j, i, j ∈ {1, 2}. Define a 
mapping as follows 
 

f : (G(I)/B(I)i) −→ B(I)j i =/ j 
: xB(I)i ›→ y (∗) 

 
We show that (∗) is (i) a monomorphism, (ii) an epimorphism. 
 
Suppose that |B(I)i| < |B(I)j |, i =/ j. Then for all x ∈ G(I), there exists y ∈ B(I)j such that f 
(xB(I)i) = y. 
 
Also, if f (x1B(I)i) = f (x2B(I)i) = y. Then, 
 

x1B(I)i = x2B(I)i (2) 
 

And by cancellation law (see [9], [11]) post multiply both sides of (2) by B(I)−i 
1 we have that 

 

x1B(I)iB(I)−i 
1 = x2B(I)iB(I)−i 

1 

 
⇒ x 1= x2. 

 
This confirms (i) and (ii) as stated above. 
 
The case is similar for |B(I)i| > |B(I)j |, i≠ j, i, j ∈ {1, 2} 
  
In dealing with the second aspect of the problem, the following items are very imperative: Define 
the upper Ω-series: 
 

{1} = Ω (0) (G(I)) < Ω (1) (G(I)) < · · · < Ω(s)(G(I)) < · · · 

 
of a neutrosophic p-group G(I) as follows: 
 

Ω (0) (G(I)) = {1} 

 
Ω(i+1) (G(I))/Ω(i)(G(I)) = Ω1(P/Ω(i)(G(I))), i = 0, 1, . . . 

 
Clearly, Ωi(G(I)) ≤ Ω(i)(G(I)). 

 
Ω(i)(G(I)) = Ω(i+1) (G(I)) implies Ω(i)(G(I)) = G(I). 

 
But Ω(i)(G(I)) = Ω(i+1) (G(I)) does not imply that Ωi(G(I)) = G(I). Now, set 

 

. Ω(i+1) (G(I)): Ω(i)(G(I)) = pti+1 
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|℧i(G(I)): ℧i+1(G(I)) | = pvi+1, i = 0, 1, . . . 
 
Definition A1 [8]. 

i. G(I) is said to be upper pyramidal if t1 ≥ t2 ≥ · · · 
ii. G(I) is said to be lower pyramidal if v1 ≥ v2 ≥ · · ·. 

 
Definition A2 
A neutrosophic p-group G(I) is said to be generalized homocyclic if it satisfies the 
following conditions as noted in definition A1. 

i. t1 = t2 = · · · = v1 = v2 = · · · 

ii. Ω(i+1) (G(I))/Ω(i)(G(I)) are abelian for all nonnegative integer i. 

iii. If D(I) is a term of the upper or lower central series of G(I), then D(I) = Ωi(G(I)) for some 
nonnegative integer i. 

 
If G(I) is a generalized homocylic neutrosophic group of exponent pe, then Ω(i)(G(I)) = Ωi(G(I)) 

and exp(Ωi(G(I))) = pi ∀ i ≤ e [8]. 
 
Now, suppose that a metacyclic p-group, p > 2 has a nonabelian neutrosophic section Y 
(I), of order p3. If p = 2 and G(I) is not of maximal class, then the result is in harmony with 
Lemma 4 (i) and (ii). 
 
On the other hand, if p > 2, then going by induction on |G(I)|, assuming G(I) is non- abelian. Then, 
by Lemma 3, if G(I) is neither cyclic nor a 2-group of maximal class, then 
 

Ω1(G(I)) ∼= Ep2. 
 
By proposition 1, |G(I)| = p2. 

=⇒ G = Y (its section) 
=⇒ Y is a trivial subgroup of G(I). 

 
If G(I) is nonabelian of order p4 and exponent p2, it is not generalized homocyclic (see section 
8 of [8]). (We have that t1 = t2 = v1 = v2 = 2), 
 
If p > 2, then G(I) is metacyclic. So, |G(I)/G(I)J| = p3 and G(I)J ≠ Ω1(G(I))  
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