
Journal of Research in Engineering and Computer Sciences 
April 2023, Vol. 1, No. 1, pp. 29-42   

 

New Formula for Calculations of Scattering Cross-
Sections According to Quantum Mechanics 

 

Hasan Hüseyin Erbil  

1. Physics Department, Faculty of ScienceEge University (Retired), Bornova-Izmir, Turkey 
 

Abstract: 
We have calculated the general elastic and inelastic scattering differential and total 
cross-sections using a simple general solution of radial Schrödinger equation for a 
particle or particle current in a central field, generally. Before, we have obtained the 
general simple formulas of the scattering amplitudes and elastic, inelastic (no-elastic) 
and total scattering cross-sections. After, we have made some applications, 
numerically. In these applications, the barrier potentials are assumed to have 
centrifugal plus Coulomb potentials. With these potentials, the elastic, inelastic 
(absorption, radiation, particle detachment, particle capture, etc.) and total scattering 
cross-sections of different targets were calculated. Scattering cross-sections for  He 2

3   

particles of three different energies on many targets, from  Be  to Pb 82
208

4
9 , are 

calculated. The calculated results are compared with experimental results. The results 
calculated have given satisfactory agreement with the available experimental results. 
Then, when the experimental elastic and reaction cross sections are known, we 
calculated the width of the potential barrier and the coefficient of transmission of 
potential barrier. By taking thermal neutrons as incoming particles, the potential 
barrier transmission coefficients and barrier widths were calculated for many nuclei as 
examples. 
 
Keywords: Cross-sections, elastic scattering, inelastic (no-elastic), scattering theory, 
transmission coefficient 

 

 
INTRODUCTION 

When a flowing particle or particle current is encountered with a potential energy barrier greater 
than its total energy, it cannot pass the potential barrier and return to its environment or 
disappear within the potential according to classical physics. However, the observations indicate 
that such a particle or particle current may pass the potential barrier. In quantum physics, this 
phenomenon is called tunneling. Studying the movement of the particle or particle current, 
including tunneling, is called scattering. The terms elastic and inelastic scattering are used in 
scattering theory. These terms are also measured by scattering cross sections. Elastic or inelastic 
(reaction or absorption) scattering and cross-sections are generally calculated according to the 
partial-wave expansion method or by a semi-classical method called WKB (Wentzel-Kramers-
Brillouin) in nuclear physics. In these calculations, there are approximations, and the calculations 
are quite difficult and complex. All these approximations were made obligatory because the 
Schrödinger equation could not be solved exactly. Since the exact solution of the Schrödinger 
equation can now be made [1, 2], so it is not necessary to make these approximations. In this 
working, the differential elastic, inelastic and total scattering cross-sections were calculated using 
a simple general method developed for the solution of the radial SE (RSE) of a particle at the 
central field, without making any approach to the wave functions. First, we used our solution to 
calculate scattering amplitudes, particle currents, and the cross-section of scatterings from a 
general spherically symmetric potential containing attractive and repulsive parts. Then, the 
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scattering cross sections by several nuclei were calculated as examples. Then, the relationship 
between the cross sections and the tunneling or barrier transmission coefficient was calculated 
and made in several numerical applications. The calculated results were compared with the 
experimental results. All values were found to be in perfect agreement. It was then shown that if 
the experimentally measured cross sections are known, the coefficient of crossing the potential 
barrier and the width of the potential barrier can be found. Numerical applications were made.  
 

SCATTERING THEORY 
Let us consider a spherical wave progressing at the direction of Oz axis from right to left and 
arriving to a central potential field, sitting at the origin of the Oxyz coordinate system. When we 
consider scattering, we shall assume that the interaction between the scattering particle and the 
scatter can be represented by an effective central potential energy function U(r), where r is the 
relative radial variable. The effective potential U(r) can include attractive and repulsive parts. Such 
a central potential is schematically represented in Figure 1. The total energy of the incoming 
particle beam is E, and the incoming particle beam can be represented by the spherical wave. This 
progressive spherical wave progress from right to left and arrives to the point  r = r1  in Figure 1. 
We divide the potential region into three zones and examine the motion of particle beam into 
these three zones. 
 
Conversion of Potential into Two Parts 
The effective potential contains both attractive (negative potential energy) and repulsive (barrier 
potential energy) parts. The energy of the incoming particle stream is always positive energy. To 
make the calculations easier and more understandable, it is more appropriate to make all the 
effective potential positive. If the potential is given as V(r) = V0(r) − V00, [V0(r) >
 0  and  V00 >  0] , the effective potential is  U(r) = V0(r) − V00 +   b r2⁄ < 0  in the bound 
states. Here,  b r2⁄   is rotational energy, and −V00 is the depth of the potential well. Let us find 
the maximum and minimum values of this effective potential U(r). Let the roots of the 
equation  U′(r) = 0,   rm1  and  rm2 be. r0 = rm1 is the point where the effective potential 
receives the smallest values  U(rm1), and  rm2 is the point where the effective potential largest 
value   U( rm2) = Ub. Let  U0 = U(r0) − V00.  Thus, U(r) = V0(r) − U0 +   b r2⁄ < 0  can be 
written. By solving this U(r) potential directly, energy values and wave functions can be found. 
However, if this potential is divided into two parts, with a well and an obstacle, there may be some 
convenience. The obstacle comes from rotational, gravity, Coulomb, and similar energies. 
Therefore, the U(r) potential can be written as the sum of two parts as follows: 
 
U(r) = Uw(r) + Ub(r)  ;   [ Uw(r) = V0(r) − U0  ;  Ub(r) =   b r2⁄  + c/r]                                                    (1)  
 
Here, the Uw(r)   potential is the vibration part of the  U(r) potential, and the Ub(r) potential is 
total of the rotational and the other obstacle potential parts of the potential  U(r). Here, c/r  is 
the sum of gravity, Coulomb, and similar barrier potentials. U0  is the depth of the potential well. 
If the coordinate start is taken at the point   (r0 , −U0 )  , in this new coordinate system, Ub(r) =
 b r2⁄  + c/r  and  Uw(r) = V0(r). Thus, the effective potential is written as follows: 
 
U(r) = Uw(r) + Ub(r)  ;   [ Uw(r) = V0(r)  ;  Ub(r) =   b r2⁄  + c/r]                                                              (2) 
 
The graph of this potential is shown in Figure 1. (Shape of the  U(r) in the coordinate system at 
(r0 , −U0). In this way, three domains I, II, III are obtained. Thus, by solving the equation (2), E  
energy values are found in the bound states. Here these solutions do not concern us. The barrier 
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potential Ub(r) causes scattering of the wave propagating from right to left. This potential 
interests us here.  
 

CALCULATION OF THE SCATTERING AMPLITUDES 
Zone I is the region before the effective potential from where free particle comes; zones II, III are 
the effective potential regions where the particle beam is affected. These regions may include 
attractive and repulsive potential segments. In the scattering event, only the potential region 
U2(r) = Ub(r) is effective. We assume that  r = r1 and  r = r2 at the interface between zone I 
and II, and zone II and III, respectively. The effective potential segments in the zones are 
represented as  U1(r), U2(r) and U3(r) according to the zone numbers. The central potential can 
be taken as zero at much far from the zone I so that the particle is free in that region and the 
effective potential is composed of only the centrifugal term due to the incoming particle angular 
momentum or spin. The Coulomb interaction potential should also be added to U1(r) if that is 
available. The total energy of the incoming particle and the centrifugal term are always positive, 
and the latter is less than the former. 
 

 
Figure 1. General schematic representation of scattering by central potential 

 

The radial function obtained from the general solution of the RSE is given as: [1, 2] 
 

R(r) = F(r) r⁄   ;  F(r) = A ek r ±i G(r) + B e−k r ∓i G(r)                                                                                         (3) 
 

(a) For the case where E > U(r), k = i m1√E , G(r) = i m1  ∫ √U(r) dr 

(b) For the case where E < U(r), k = m1√E , G(r) = m1  ∫ √U(r) dr  

 
According to the functions given in Equations (3), the following functions are determined for the 
zones that are considered as follows: 
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In the zone 𝑰: 

 E > 0 , U1(r) > 0  and  E > U1(r) ;  k = i m1√E = i K  ;  G1(r) = i m1 ∫ √U1(r) dr = i Q1(r) ; 
 
In the zone 𝑰𝑰:   

E > 0 , U2(r) > 0  and  E < U2(r)  ;  G2(r) = m1 ∫ √U2(r) dr = Q2(r) ;  
 
In the zone 𝑰𝑰𝑰: 

E > 0  and E > U3(r)  ;   k = i m1√E = i K  ;  G3(r) = i m1 ∫ √U3(r) dr = i Q3(r)  ; 

K = m1√E   ;   m1 = √2 𝑚 ℏ⁄    ;    Qp(r) = m1 ∫ √U𝑝(r)  dr  ,   (p = 1, 2, 3)  

 
Under these circumstances, the radial wave functions in the three zones can be put in the forms 
below regarding the general functions given in Equations (3). 
 

F1(r) = A1ei K r−Q1(r) + B1e−i K r+Q1(r)  ;                                          (4a)  
 

F2(r) = A2e K r±i Q2(r) + B2e− K r∓i Q2(r)  ;                                                           (4b) 
 

F3(r) = A3e− i K r± Q3(r)   ;   [ Q1(r) > 0  , Q2(r) > 0 , Q3(r) > 0 ]                                            (4c) 
 
The potential in zone III can also be complex in some cases (usually called the optical potential).  
If  U3(r)  is the optical potential, it can be written as follows:  
 

U3(r) = |U3(r)|ei ∅ = U31(r) + i U32(r) = √U31
2 (r) + U32

2 (r)  ei ∅                                          (5a) 
 

tan(∅) =
U32(r)

U31(r)
 , ∅ = arctan [

U32(r)

U31(r)
] ; k = i m1√E = i m1√−|E| = K    

  

Q3(r) = ∫ √|U3(r)| dr = m1 ∫ √√U31
2 (r) + U32

2 (r)  dr = m1 ∫ √U31
2 (r) + U32

2 (r)4
 dr                 (5b) 

 
In Equations (4a-4c), the functions Qp(r) can also be written briefly as follows: 

 

Qp(r) = m1 ∫ √|Up(r)| dr ,   [p = 0, 1, 2, 3]                                                                              (5c) 

 
The terms of containing (A1 and  B1) coefficients in the functions of the Equation (4a) give 
outgoing wave and incoming waves, respectively. We assume that the amplitude of incoming 
wave at the boundary of zone I and II is constant.  The second (4b) and the third (4c) functions 
represent the states of the wave in the effective region of the potential. The (4c) function 
represents the wave passing from region (II) to region (III). Applying the continuity conditions 

on Fp(rj) and Fp
′ (rj), [p, j = 1, 2, 3] functions, the coefficients A1 and  B1 in Equations (4a–4c) 

can be determined. These conditions at the boundary points of the three zones can be written in 
the following form:  
 
F1(r1) = F2(r1) ;  F1

′ (r1) = F2
′ (r1) ;  F2(r2) = F3(r2) ; F2

′ (r2) = F3
′ (r2); 

 Qp
′ (rj) = K, (p , j = 1,2,3)                                                                                                                                           (6) 
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The coefficients A1, A2 , B2 , A3 in the functions given in Equations (4a–4c) can be found by 
solving four linear equations, which can be obtained by using the conditions given in Equation (6) 
for each of the functions given in Equations (4a–4c). These coefficients are obtained depending 
on the B1  coefficient. The essential coefficients for the scattering cross section are A1 and  A3  as 
described below. Therefore, there is no need to give other coefficients here. The 
A1 and  A3  coefficient, which is obtained from four equations, is computed by considering the 
lower and upper signs in the exponential expressions in Equations (4a-4c). With these coefficients, 
the tunnel passing coefficient can be recalculated. We have calculated these coefficients, but 
there is no need to give them here. Because, as can be seen below, these coefficients are not 
needed to calculate the scattering cross sections. Now, let us explain this situation below: 
 
The terms with  A1 and B1 in the functions given in Equation (4a) representing the outgoing and 
incoming waves respectively at the point  r = r1 .  So, the r1 value is obtained by solving the 
equation E = Ub(r). Thus, the wave functions arriving and scattered at the r = r1 and passing 
through to the point  r = r2 are as follows:  
 

Cs(r1) = A1 e±Q1(r1), (scattering amplitude);  

Rs(r) =
Fs(r)

r
= Cs(r1)

ei K r

r
= A1 e±Q1(r1)  

 ei K r

r
                                                                                                 (7a) 

 

Cc(r1) = B1 e±Q1(r1), (incoming amplitude);  

Rc(r) =
Fc(r)

r
= Cc(r1)

e−i K r

r
= B1 e±Q1(r1)  

 e−i K r

r
                                                                                                (7b) 

 

Cp(r2) = A3 e±Q3(r2), (passing amplitude);  

Rp(r) =
Fp(r)

r
= Cp(r2)

e− i K r

r
= A3 e±Q3(r2)  

 e− i K r

r
                                                                                           (7c) 

 
The functions (7a-7c) represent scattering, incoming and transmission waves, respectively. 
  
Calculation of Particle Currents 

Using the (7a-7c) functions and the equation  J(r) =
ℏ

2 m i
 [R∗(r)

dR(r)

dr
− R(r)

dR∗(r)

dr
], the current-

density expression, the current densities for these three functions are found as follows: 
 

Js =
1

r1
2  

ℏ K

m
CsCs

∗ =
1

r1
2  

ℏ K

m
 |Cs|2  (scattering current density)                                                         (8a) 

 

Jc =
1

r1
2  

ℏ K

m
CcCc

∗ =
1

r1
2  

ℏ K

m
 |Cc|2                  (incoming current density)                                                                     (8b) 

 

Jp =
1

r1
2  

ℏ K

m
CpCp

∗ =
1

r1
2  

ℏ K

m
 |Cp|

2
            (passing current density)                                                                      (8c) 

 
CALCULATIONS OF SCATTERING CROSS-SECTIONS 

Calculation of Differential Elastic Scattering Cross-Section 
The probability per unit differential surface of a sphere of radius  r1,  that an incident particle is 
scattered into the differential surface area on the sphere of radius r1 , dS = r1

2 dΩ, [dΩ =
sin(θ) dθ dϕ ] is expressed as the ratio of the scattered current to the incident current, that is: 
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dσs

dS
=

dσs

r1
2dΩ

=
Js(r1)

Jc(r1)
   →   

dσs

dΩ
=

Js(r1)

Jc(r1)
 r1

2                                                                                                                   (9) 

 
The differential elastic cross-section can be expressed in a simple form by putting Equations (8) 
into Equation (9) as follows:  
 
dσs

dΩ
=

Cs(r1) Cs
∗(r1)

Cc(r1) Cc
∗(r1)

 r1
2 =

|Cs(r1)|2

|Cc(r1)|2  r1
2 =

Js(r1)

Jc(r1)
 r1

2                                                                                                   (10) 

 
Since the scattering is azimuthally symmetrical, the angle ϕ can be integrated out so that the 
expression given in Equation (10) can be written as follows:  
 
dσs

dθ
= 2 π 

Js(r1)

Jc(r1)
 r1

2 sin(θ) = 2 π
|Cs(r1)|2

|Cc(r1)|2  r1
2 sin (θ                                                                                          (11) 

 
The expression (11) shows the elastic scattering differential cross sections in the angle dθ which 
is usually measured experimentally. 
 
Calculation of Differential Inelastic or Reaction (No-Elastic) Cross-Section 
Differential reaction (capture of particle, emission of particle, inelastic collision…) cross- section 
per the solid angle can be found through the difference between the incoming current and the 
outgoing current divided by the former. By analogy with Equation (11), the differential reaction 
cross-section can be expressed as follows: 
 
dσr

dθ
= 2 π 

[Jc(r1)−Js(r1)]

Jc(r1)
 r1

2 sin(θ) = 2 π
[|Cc(r1)|2−|Cs(r1)|2]

|Cc(r1)|2  r1
2 sin(θ)                                                         (12) 

 
Calculation of Total Cross Sections 
The total elastic scattering cross section is the total probability to be elastic scattered in any 
direction and it can be determined through the integral of differential cross-section given in 
Equation (11) as follows: 
 

σs = ∫ dσs = ∫
dσs

dΩ
dΩ = ∬

Js(r1)

Jc(r1)
 r1

2 sin(θ) d θ dϕ = 4 π r1
2  

Js(r1)

Jc(r1)
= 4 π r1

2 |Cs(r1)|2

|Cc(r1)|2                        (13) 

 
By analogy with Equation (11), the total reaction cross-section can be expressed as follows: 
 

σr = 4 π r1
2  

[Jc(r1)−Js(r1)]

Jc(r1)
= 4 π r1

2  (1 −
Js(r1)

Jc(r1)
) = 4 π r1

2  (1 −
|Cs(r1)|2

|Cc(r1)|2) = 4 π r1
2 − σs                   (14) 

 
In Equation (12), it is seen that if  Js(r1) = Jc(r1), then σr = 0, full-elastic scattering; if Js(r1) >
Jc(r1), then σr < 0,  it is taken out of the particle from the target (emission of particle from target) 
and if  Js(r1) < Jc(r1), then σr > 0, it is captured (absorbed) the particle by the target. 
 
The total scattering cross-section, including all process [elastic plus reaction (all no-elastic 
events)]:    
 

σt = σs + σr = 4 π r1
2  

Js(r1)

Jc(r1)
+ 4 π r1

2  
[Jc(r1)−Js(r1)]

Jc(r1)
= 4 π r1

2                                                                        (15) 
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Then, the cross-sections σs, σr , σt can be expressed through the Cs(r1) coefficient given above.  
 

RELATIONSHIP BETWEEN SCATTERING CROSS SECTIONS AND POTENTIAL  
BARRIER TRANSMİSSİON COEFFICIENT (TRANSMISSION COEFFICIENT) T 

It is also possible to easily calculate the scattering cross-sections in terms of the potential barrier 
transmission coefficient (T), which are calculated by the amplitudes of the waves and given by the 
formulas (13-15). But there is no need to calculate amplitudes and particle currents here. Because 
the scattering cross sections can be easily calculated based on the coefficient of crossing the 
potential barrier. Now, let us calculate the scattering cross sections depending on the coefficient 
of crossing the potential barrier.  
 
Incoming particle current  Jc, elastic scattering particle current  Js, transmission or remaining in 
the potential barrier (inelastic or reaction) particle current  Jr ; let the total elastic scattering cross 
section  σs , the total reaction cross section  σr, and the total scattering cross section σt be. By 
putting   Jr = T Jc  in expressions (13-15), the following expressions are obtained:  
 

σs = 4 π r1
2  

Jc−Jr

Jc
= 4 π r1

2  (1 −
Jr

Jc
) = 4 π r1

2  (1 −
T Jc

Jc
) = 4 π r1

2 (1 − T )                                          (16) 

 

σr = 4 π r1
2  

Jc−Js

Jc
= 4 π r1

2  
Jc−(Jc−Jr)

Jc
= 4 π r1

2  
Jr

Jc
 = 4 π r1

2  
T Jc

Jc
  = 4 π r1

2 T                                          (17) 

 
σt = σs + σr = 4 π r1

2                                                                                                                                                 (18) 
 
(Jc, Js , Jr ) are incoming, scattering, reaction currents, respectively. Here, T is the tunneling 
probability coefficient (or transmission coefficient of potential barrier) is given by the following 
formula [1-6]:  

 

T =
2

cosh[2 K d] + cos(2 P)
 

 

Here, the width of the potential barrier  d = r1 − r2 ,  K = m1√|E|  , m1 = √2 𝑚 ℏ⁄  , E energy, 
and  P = Q2(r1) − Q2(r2). If  Q2(r) is pair function,  P = 0.  If  Q2(r) is not pair function,  P =
Real[Q2(r1) − Q2(r2)] zero or approximately zero can take. So, if  P = 0,  the following 
coefficient of transmission is obtained: 
 

T(d2) =
2

1+cosh[2 K(E)d2(E)]
 ,  d2 = r1 − r2 . If   d2  =  0, then  T =  1                                        (19) 

 
It is easier to calculate T, which obviously does not depend on the shape of the potential barrier. 
It can be seen from (16-18) that the scattering cross sections depend on the penetration 
coefficient T(d2) and  r1. Calculating this coefficient T is easier than calculating amplitudes. In 
fact, the T coefficient is also obtained by calculating the scattering amplitudes described above. 
As a result, the scattering cross sections are simply.  
 

σs = 4 π r1
2 10 [1 − T(d2(E))] = 40 π r1

2  [1 − T(d2(E))]                                                                         (20) 

 

σr = 4 π r1
2 10 T(d2(E)) = 40 π r1

2 T(d2(E))                                                                                                  (21) 
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σt = σs + σr = 4 π r1
2 ∗ 10 = 40 π r1

2                                                                                                              (22) 
 
If  r1 and d2  are taken as fermi (fm) in equations (20-22), the scattering cross sections will be 
millibarn (mb). The factor of 10 in these equations comes from taking such units. It can be seen 
from these formulas given in Equations (20-22) that the scattering cross-sections (σs , σr  and  σt) 
depend on the total energy E [with K(E) , r1(E)  and  d2(E) ] . Here, r1 can be considered as 
impact or collision parameter, classically. 
 

EXAMPLES OF THE CALCULATION OF SCATTERING CROSS-SECTION  
Model Potentials and Their Some Ingredients 
To calculate a scattering cross-section, a model potential should be considered. We consider the 
potential for scattering in Figure 1.  As can be seen from the (20-22) formulas, wave functions are 
not needed to calculate the scattering cross sections. Therefore, there is no need to know the 
exact shapes of the potentials. It is sufficient to calculate only the  r1 and  r2  coordinates. Here as 
example, we consider two cases: (1) Rectangle potential as U3 potential segment, and barrier 
potential Ub as U2 potential segment (centrifugal potential plus Coulomb potential). (2) Harmonic 
oscillator potential as U3 potential segment, and barrier potential Ub as potential U2 (centrifugal 
potential plus Coulomb potential). The potential zones are defined in Figure 1. The scattering 
affects only relative motion. The scattering cross-section of the incoming (incident or projectile) 

particle depends on the relative energy  Er = MtEL (Mp + Mt)⁄ , where Mp  and  Mt respectively 

mass of incident (projectile) and target particles; EL , Laboratory energy; and  Er, relative energy.  
 
Case 1. Rectangle Potential As 𝐔𝟑 Potential Segment and Barrier Potential 𝐔𝐛 As 𝐔𝟐 Potential 
Segment 

We have taken   r2 = R0(Ap
1 3⁄

+ At
1 3⁄

)  in potential segment  U3, and   Ub(r) = b r2⁄ + Cc r⁄  as 

potential segment U2, where Ap  and  At  are the mass numbers of the projectile and the target, 

respectively. R0 is a parameter. The positive root of the equation  U2(r) =  Ub(r) = Er  is  r11 =

Cc + √Cc
2 + 4 b Er (2 Er)⁄ . Then,  r1 =  r2 + r11 . So,   r1 −  r2 =  d2(E) = r11 is the width of the 

potential barrier. The zones and rk , (k = 1, 2) values are shown in Figure 1.  
 
VS(r) = b r2⁄ , centrifugal potential ;   b = ℏ2 J (J + 1) (2 Mr)⁄  , Mr  reduced mass, J relative 
total angular momentum. 
 

Vc(r) = Cc r⁄  , Coulomb potential, Cc = (Zpe)(Zte) = ZpZte2,   Zp and  Zt  are charge number of 

projectile and target, respectively. And  e  is the unit electric charge. 
 
It is seen from Equations (20-22) that  σt  depends only on the  r1 value, although the σs  and  σr 
cross sections depend on the  r1  and  T  quantities. The r2 quantity depends on the R0 parameter. 
Even though σs  and  σr  have changed with the  T   and  r1 , σt = σs + σr depend on only   r1 . In 
other words, the total cross-section does not depend on the T . So, R0 parameter can be obtained 

from the solution of the equation   4πr1
2 ∗ 10 = σt

exp
 as follows, (σt

exp
 is experimental total cross-

section): 
 

R0 =
−√π 10 [Cc + √Cc

2 + 4 b Er] + Er √10 σt
exp

20 Er√π [√Ap
3 + √At

3 ]
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Table 1.  [𝐇𝐞 [𝟐 , 𝟑]  +   𝐗𝐧 [𝐙 , 𝐍]  Cross-sections comparison with those measured (case 1) 
𝐗𝐧[𝐙, 𝐍]  
(𝐓𝐚𝐫𝐠𝐞𝐭) 

𝐄𝐋(𝐌𝐞𝐕) 
He (2,3)  

𝐫𝟐(𝐟𝐦)  𝐫𝟏(𝐟𝐦)  𝐝𝟐 (𝐟𝐦)  𝐓(𝐝𝟐)    𝛔𝐬
𝐜𝐚𝐥  

(𝐦𝐛)  
  𝛔𝐫

𝐜𝐚𝐥  
(𝐦𝐛)  

 𝛔𝐭
𝐜𝐚𝐥  

(𝐦𝐛)  
 𝛔𝐭

𝐞𝐱𝐩
 

(𝐦𝐛)  
Be (4,9) 96.4 2.13126 2.53101 0.399748 0.349472 524 281 805 805 

Be (4,9) 137.8 1.98812 2.30905 0.320928 0.489133 342 328 670 670 

Be (4,9) 167.3 1.94451 2.23016 0.285641 0.449812 344 281 625 625 

          

C (6,12) 96.4 2.11525 2.53885 0.423602 0.274485 588 222 810 810 

C (6,12) 137.8 2.04314 2.37697 0.333830 0.42318 410 300 710 710 

C (6,12) 167.3 1.9711 2.26556 0.294453 0.389204 394 251 645 645 

          

O (8,16) 96.4 2.33304 2.78546 0.452419 0.108278 869 106 975 975 

O (8,16) 137.8 2.25012 2.60079 0.350669 0.315005 582 268 850 850 

O (8,16) 167.3 2.21638 2.52313 0.306753 0.330808 535 265 800 800 

          

Si (14,28) 96.4 2.57607 3.15392 0.577846 0.058062 1177 73 1250 1250 

Si (14,28) 137.8 2.5937 3.02513 0.431427 0.234463 880 270 1150 1150 

Si (14,28) 167.3 2.54117 2.91119 0.370019 0.184194 869 196 1065 1065 

          

Ca (20,40) 96.4 2.56153 3.28976 0.728229 0.006241 1352 8 1360 1360 

Ca (20,40) 137.8 2.65994 3.19154 0.531601 0.095339 1158 122 1280 1280 

Ca (20,40) 167.3 2.67211 3.12222 0.450103 0.091308 1113 112 1225 1225 

          

Ni (28,58) 96.4 2.72392 3.66723 0.943309 0.000722 1689 1 1690 1690 

Ni (28,58) 137.8 2.85735 3.53464 0.677288 0.032315 1519 51 1570 1570 

Ni (28,58) 167.3 2.85255 3.42022 0.567666 0.031998 1423 47 1470 1470 

          

Ni (28,60) 96.4 2.72005 3.6618 0.941755 0.000605 1684 1 1685 1685 

Ni (28,60) 137.8 2.90321 3.57938 0.676173 0.032315 1558 52 1610 1610 

Ni (28,60) 167.3 2.89971 3.46644 0.566731 0.031998 1462 48 1510 1510 

          

Sn (50,112) 96.4 2.54198 4.1122 1.570220 1.6668*10-6 2125 0 2125 2125 

Sn (50,112) 137.8 2.95942 4.06843 1.109010 0.001269 2077 3 2080 2080 

Sn (50,112) 167.3 3.14889 4.06843 0.919543 0.001360 2077 3 2080 2080 

          

Sn (50,116) 96.4 2.65792 4.22672 1.5688 1.20939*10-6 2245 0 2245 2245 

Sn (50,116) 137.8 3.02832 4.13632 1.108 0.00126874 2147 3 2150 2150 

Sn (50,116) 167.3 3.21761 4.13632 0.918711 0.00136031 2147 3 2150 2150 

          

Sn (50,118) 96.4 2.72861 4.29674 1.56813 1.0125*10-6 2320 0 2320 2320 

Sn (50,118) 137.8 3.12389 4.23142 1.10753 0.00009892 2250 0 2250 2250 

Sn (50,118) 167.3 3.24676 4.16508 0.918316 0.00136031 2177 3 2180 2180 

          

Sn (50,120) 96.4 2.69673 4.26421 1.56747 1.20054*10-6 2285 0 2285 2285 

Sn (50,120) 137.8 3.10551 4.21257 1.10707 0.00126874 2227 3 2230 2230 

Sn (50,120) 167.3 3.24715 4.16508 0.917934 0.00136031 2177 3 2180 2180 

          

Sn (50,124) 96.4 2.74438 4.31061 1.56623 1.20735*10-6 2335 0 2335 2335 

Sn (50,124) 137.8 3.09693 4.20312 1.10619 0.00126874 2217 3 2220 2220 

Sn (50,124) 167.3 3.22872 4.14593 0.917206 0.00136031 2157 3 2160 2160 

          

Pb(82,208) 96.4 2.18335 4.69075 2.50741 1.4303*10-10 2765 0 2765 2765 

Pb (82,208) 137.8 3.00165 4.76231 1.76066 9.54594*10-6 2850 0 2850 2850 

Pb (82,208) 167.3 3.28314 4.73718 1.45403 0.00001124 2820 0 2820 2820 
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Thus,  r1  and  r2 values are calculated, and  d2 and  T(d2) values are found. With these values, 
 σs , σr  and   σt  values are calculated. The mass values of the nuclei and some conversion factors 
and the values of the universal constants used were taken from [7, 8]. We have taken in the 
calculations the following values: e2 = 1.439976  MeV fm  ;  Mu = 931.502 MeV c2⁄  ; ℏ c =
197.329  MeV fm . The cross-sections at three different energies of  He[2, 3] have been 
calculated for many different targets.  The calculated cross-sections have been compared with 
those measured taken from [9-11]. The comparisons are made in the way that is described above 

and given in Table 1. In this table: Xn [Z, N] target; EL laboratory energy of projectile;  σr
cal, σs

cal ,

σt
cal calculated reaction, elastic total cross-sections; σt

exp
 experimental measured total cross-

section. There is no need for relative angular momentums here. Because the individual total 
angular momentum of the target particles, except Be (4,9), is zero. 
 
Case 2. Harmonic Oscillator Potential As 𝐔𝟑 Potential, Barrier Potential 𝐔𝐛 As Potential 𝐔𝟐 
(Centrifugal Potential Plus Coulomb Potential).  

We have taken the harmonic oscillator potential   V(r) =
1

2
 Mr ω

2 r2  as potential segment  U3, 

and   Ub(r) = b r2⁄ + Cc r⁄   as potential segment U2, where Mr  and  ω  are the reduced mass of 
the projectile and the target, and  a parameter, respectively. The positive root of the equation  

V(r) = Er  is  r2 = √2 Er (Mr ω2)⁄  , and  the positive root of the equation  Ub(r) = Er  is  r11 =

Cc + √Cc
2 + 4 b Er (2 Er)⁄ . Then,  r1 =  r2 + r11 . So,   r1 −  r2 =  d2(E) = r11 is the width of the 

potential barrier. The zones and rk , (k = 1, 2) values are shown in Figure 1.  
 
VS(r) = b r2⁄ , centrifugal potential ;   b = ℏ2 J (J + 1) (2 Mr)⁄  , Mr  reduced mass, J relative 
total angular momentum. 
 

Vc(r) = Cc r⁄  , Coulomb potential, Cc = (Zpe)(Zte) = ZpZte2,   Zp and  Zt  are charge number of 

projectile and target, respectively. And  e  is the unit electric charge.  
 
It is seen from Equations (20-22) that  σt  depends only on the  r1 value, although the σs  and  σr 
cross sections depend on the  r1  and T  quantities. The r2 quantity depends on the  ω  parameter. 
Even though  σs  and  σr  have changed with the  T  and  r1 , σt = σs + σr depend on only   r1 . In 
other words, the total cross-section does not depend on the T . So,  ω  parameter can be obtained 

from the solution of the equation   4πr1
2 ∗ 10 = σt

exp
 as follows (σt

exp
 is experimental total cross-

section): 

ω =

4 (−5 √2  Er (Cc + √Cc
2 + 4 b Er)√ ErMr  π + √5 π √Er

5 Mr σt
exp

)

Mr (20 (Cc
2 + 2 b Er) π + 20 Cc √Cc

2 + 4 b Er π − Er
2 σt

exp
)

 

 
After that, the procedures in case 1 were performed exactly and the results are given in Table 2. 
Experimental cross section values were taken from [9, 11]. 
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Table 2.  [𝐇𝐞 [𝟐 , 𝟑]  +   𝐗𝐧 [𝐙 , 𝐍]  Cross-sections comparison with those measured (case 2) 
𝐗𝐧 (𝐙, 𝐍)  
(𝐓𝐚𝐫𝐠𝐞𝐭) 

𝐄𝐋(𝐌𝐞𝐕) 
He (2,3)  

𝐫𝟐(𝐟𝐦)  𝐫𝟏(𝐟𝐦)  𝐝𝟐 (𝐟𝐦)  𝐓(𝐝𝟐)    𝛔𝐬
𝐜𝐚𝐥  

(𝐦𝐛)  
  𝛔𝐫

𝐜𝐚𝐥  
(𝐦𝐛)  

 𝛔𝐓
𝐜𝐚𝐥  

(𝐦𝐛)  
 𝛔𝐓

𝐞𝐱𝐩
 

(𝐦𝐛)  

Be (4,9) 96.4 213.126 253.101 0.399748 0.349472 524 281 805 805 

Be (4,9) 137.8 198.812 230.905 0.320928 0.489133 342 328 670 670 

Be (4,9) 167.3 194.451 223.016 0.285641 0.449812 344 281 625 625 

                    

C (6,12) 96.4 211.525 253.885 0.423602 0.162172 679 131 810 810 

C (6,12) 137.8 204.314 237.697 0.33383 0.42318 410 300 710 710 

 C (6,12) 167.3 19.711 226.556 0.294453 0.389204 394 251 645 645 

                    

O (8,16) 96.4 233.304 278.546 0.452419 0.108278 869 106 975 975 

O (8,16) 137.8 225.012 260.079 0.350669 0.358975 545 305 850 850 

O (8,16) 167.3 221.638 252.313 0.306753 0.330808 535 265 800 800 

                    

Si (14,28) 96.4 257.607 315.392 0.577846 0.0331079 1209 41 1250 1250 

Si (14,28) 137.8 25.937 302.513 0.431427 0.116715 1016 134 1150 1150 

Si (14,28) 167.3 254.117 291.119 0.370019 0.184194 869 196 1065 1065 

                    

Ca (20,40) 96.4 256.153 328.976 0.728229 0.00624113 1352 8 1360 1360 

Ca (20,40) 137.8 265.994 319.154 0.531601 0.0953393 1158 122 1280 1280 

Ca (20,40) 167.3 267.211 312.222 0.450103 0.0913077 1113 112 1225 1225 

                    

Ni (28,58) 96.4 272.392 366.723 0.943309 0.000722156 1689 1 1690 1690 

Ni (28,58) 137.8 285.735 353.464 0.677288 0.0323153 1519 51 1570 1570 

Ni (28,58) 167.3 285.255 342.022 0.567666 0.0319982 1423 47 1470 1470 

                    

Ni (28,60) 96.4 272.005 36.618 0.941755 0.000604864 1684 1 1685 1685 

Ni (28,60) 137.8 290.321 357.938 0.676173 0.0323153 1558 52 1610 1610 

Ni (28,60) 167.3 289.971 346.644 0.566731 0.0319982 1462 48 1510 1510 

                    

Sn (50,112) 96.4 254.198 41.122 157.022 1.6668*10-6 2125 0 2125 2125 

Sn (50,112) 137.8 295.942 406.843 110.901 0.00126874 2077 3 2080 2080 

Sn (50,112) 167.3 314.889 406.843 0.919543 0.00136031 2077 3 2080 2080 

                    

Sn (50,116) 96.4 265.792 422.672 15.688 1.2094*10-6 2245 0 2245 2245 

Sn (50,116) 137.8 302.832 413.632 1.108 0.00126874 2147 3 2150 2150 

Sn (50,116) 167.3 321.761 413.632 0.918711 0.00136031 2147 3 2150 2150 

                    

Sn (50,118) 96.4 272.861 429.674 156.813 1.2008*10-6 2320 0 2320 2320 

Sn (50,118) 137.8 312.389 423.142 110.753 0.00126874 2247 3 2250 2250 

Sn (50,118) 167.3 324.676 416.508 0.918316 0.00136031 2177 3 2180 2180 

                    

Sn (50,120) 96.4 269.673 426.421 156.747 1.2005*10-6 2285 0 2285 2285 

Sn (50,120) 137.8 310.551 421.257 110.707 0.00126874 2227 3 2230 2230 
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Sn (50,120) 167.3 324.715 416.508 0.917934 0.00136031 2177 3 2180 2180 

                    

Sn (50,124) 96.4 274.438 431.061 156.623 1.2074*10-6 2335 0 2335 2335 

Sn (50,124) 137.8 309.693 420.312 110.619 0.00126874 2217 3 2220 2220 

Sn (50,124) 167.3 322.872 414.593 0.917206 0.00136031 2157 3 2160 2160 

                    

Pb (82,208) 96.4 218.335 469.075 250.741 1.4303*10-10 2765 0 2765 2765 

Pb (82,208) 137.8 300.165 476.231 176.066 9.5459*10-6 2850 0 2850 2850 

Pb (82,208) 167.3 328.314 473.718 145.403 0.00001124 2820 0 2820 2820 

 

When Tables 1 and 2 Are Examined, The Following Can Be Said: 
It is not necessary to know the exact form of the  U3 potential segment in the calculation of the 
scattering cross sections. It doesn't matter where the coordinate start is taken. There is no need 
to calculate wave functions. It is sufficient to find the width of the barrier potential causing the 
scattering and the distance from the potential center of the point where the incoming current 
touches the potential barrier. Thus, it becomes very easy to calculate the scattering cross 
sections.  
 
Sn(50, 112 − 124) nuclear nuclei are a very good barrier for the energy 96.4 MeV of incoming 
current, and  Pb(82, 208)  nuclear nuclei for all three-energy of incoming current. 
 

WHEN THE SCATTERING CROSS-SECTIONS ARE KNOWN, THE CALCULATION  
OF THE BARRIER WIDTH AND BARRIER TRANSMİSSİON COEFFICIENT 

By measuring the scattering cross sections, the width of the potential barrier and the transmission 
coefficient of barrier can be calculated. From equations (20-22), we get the following values: 
 

r1 =
√σr + σs

2 √10 π
  ;  

 

 T =  
σr

σr + σs
  ;   

 

r2 = r1 −
arccosh [(2 − T) T]⁄

2 K ∗ 1013
   ;  

 

 d2(Er) =
arccosh [(2 − T) T]⁄

2 K ∗ 1013
 

 
In these equations, the desired values are obtained by taking the experimentally measured cross-
sections:   
 

T(d2(Er)) =
𝛔𝐫

𝐞𝐱𝐩

𝛔𝐫
𝐞𝐱𝐩

+𝛔𝐬
𝐞𝐱𝐩  , obstacle passing coefficient ; d2(Er) =

arccosh [(2−T) T]⁄

2 K∗1013
,  Obstacle 

width. The barrier potential widths and barrier transmission coefficients calculated for many 
thermal neutron cross sections are given in Table 3. Experimental cross section values were taken 
from [9]. 
 



    Journal of Research in Engineering and Computer Sciences (JRECS) 

 41 

Table 3.  [𝐧 (𝟎 , 𝟏)  +   𝐗𝐧 (𝐙 , 𝐍)], when the scattering cross-sections are known, the 
calculation of the barrier width and barrier transmission coefficient for thermal neutrons.  

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

  20491 332.6 20823.6 12.8728 12.8728 1.58781x10-8 0.015972 

  20491 332.6 20823.6 12.8728 12.8728 1.58781x10-8 0.015972 

  3390 0.519 3390.52 5.19431 5.19431 2.93019x10-8 0.000153 

  6151 7.6 6158.6 7.00061 7.00061 1.74644x10-8 0.001234 

  4746 3.53 4749.53 6.14781 6.14781 1.37499x10-8 0.000743 

  3761 0.19 3761.19 5.47089 5.47089 1.76016*10-8 0.000051 

  1992 177 2169 4.15456 4.15456 5.89164x10-9 0.081604 

  3010 410 3420 5.21685 5.21685 5.13741x10-9 0.119883 

  25300 4600 29900 15.4252 15.4252 4.6877x10-9 0.153846 

  980 2900 3880 5.55662 5.55662 1.61904x10-9 0.747423 

  4909 626 5535 6.63673 6.63673 5.13281x10-9 0.113098 

  4600 115 4715 6.12542 6.12542 7.38953x10-9 0.024390 

  4260 220 4480 5.97082 5.97082 6.3536x10-9 0.049107 

  5170 140 5310 6.50043 6.50043 7.27166x10-9 0.026365 

) 4410 134 4544 6.01332 6.01332 7.10577x10-9 0.029489 

  3800 6800 10600 9.18434 9.18434 2.00611x10-9 0.641509 

  3420 1200 4620 6.0634 6.0634 3.75812x10-9 0.259740 

  2830 570 3400 5.20157 5.20157 4.47176x10-9 0.167647 

  7700 18700 26400 14.4943 14.4943 1.75215x10-9 0.708333 

  4000 2500 6500 7.19203 7.19203 3.06436x10-9 0.384615 

 

When Table 3 is examined, it can be seen that  d2 ≠ 0  and  T ≠ 1  are for thermal neutrons, 
although  r1 = r2. This situation can be explained as follows: (1) The calculation of  r1 ve  r2 may 
be due to their precession. (2) There may be a barrier potential other than the centrifugal potential 
in the structure of the target nuclei. 
 

CONCLUSION 
The calculation of cross sections through solution of radial SE (RSE) by the partial wave expansion 
is exceedingly difficult. In many cases, some approximations are needed for these kinds of 
solutions. For these reasons, there is no simple scattering cross-section formula. However, here, 
simple scattering cross-section formulas were obtained without any approximation. These 
formulas will provide great convenience to those who do research on these issues.  It will provide 
great convenience especially in material physics research. Examples here are taken from nuclear 
physics, but this method can also be used in other branches of physics. In the present study, firstly, 
differential elastic scattering, inelastic (or reaction) scattering and total cross-sections have been 
calculated without using any approximation. These calculations have been performed using a 
simple method, improved for the solution of RSE, for an incident particle being in a central field 
of any form. We have obtained the general formulas of the scattering amplitudes and elastic, 
inelastic (no-elastic) and total scattering cross-sections. Secondly, we have made some 
applications. In these applications, the potentials have been assumed to have two shapes plus 
centrifugal and Coulomb potentials. Calculations with these are not easy by the partial wave 
expansion. However, it is quite easy to make calculations with our method. With these potentials, 
the elastic, inelastic (neutron radiative capture, etc.), and total scattering cross-sections of 
different targets have been calculated. The calculated results have been compared with 
experimental results. The results calculated have given satisfactory agreement with the available 
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experimental results. Then, when the experimental elastic and reaction cross sections are known, 
we calculated the width of the potential barrier and the coefficient of transmission the potential 
barrier. By taking thermal neutrons as incoming particles, the potential barrier transmission 
coefficients and barrier widths were calculated for many nuclei.  
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